

Neues aus dem Futtermittellabor

Energiebewertung – Proteinqualität - Mikrobiologie

Dr. W. Richardt, Lichtenwalde 18. März 2009

Kennzahlen der Futterqualität

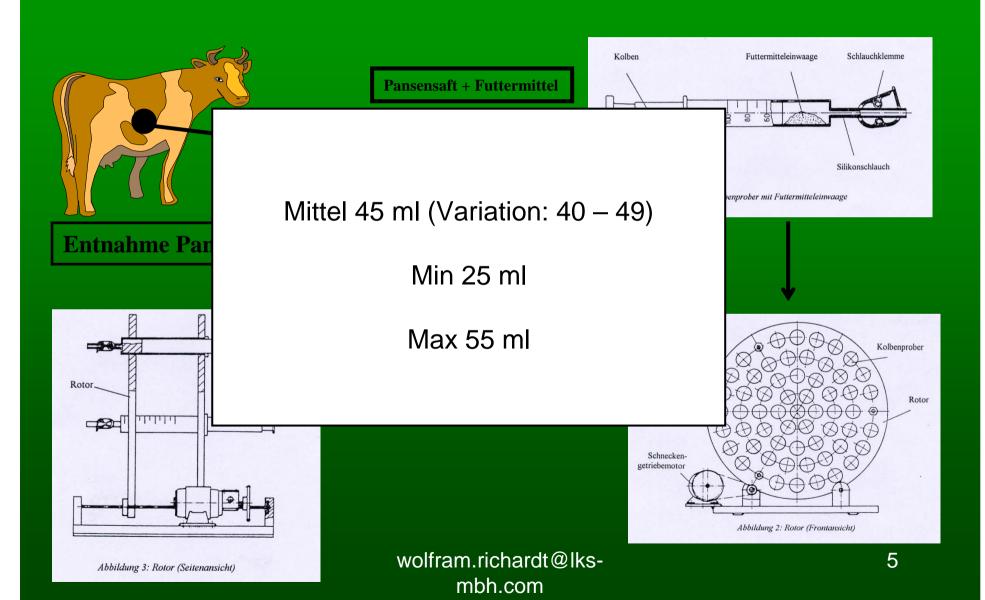
Futterqualität

allgemeingültig	Rationsty	allgemeingültig	
verzehrsbestimmende Egenschaften	wertbestimme	hygienische ⊟genschaften	
- Verdaulichkeit der org. Substanz	- Rohprotein	- Energie	- Hefen und Schimmelpilze
- Gärqualität (z.B. Essigsäure)	- Zucker und Stärke	- nut zbares Rohprotein	- Bakterien
- Häckselqualität	- Gerüstsub stanzen		- Mykotoxine und Endotoxine
- Hefen- und Schimmelpilze	- Rohfett		- Verschmutzung (Rohasche)
- Gerüstsubstanzen (z.B. NDF)	- Mineralstoffe		- Rückstände (Schwermetalle)
- antinutritive Stoffe	- Vitamine		- biogene Amine

Neuer Ansatz für die Bestimmung des Energiegehaltes von Grasprodukten

- > HFT-Gleichung 1998
 - gültig für alle Schnitte
 - keine Gültigkeit für Rohfaser <25-26%</p>
 - nur für Dauergrünland (Ackergras ??)
 - andere Gleichungen für Heu oder Frischgras
- HFT-Gleichung 2008
 - 257 Verdauungsversuche aus A und D
 - gültig für alle Schnitte
 - gültig für Rohfaser von 18 38%
 - gültig Dauergrünland und Ackerfutter
 - gültig für Grünfutter, Heu und Silagen

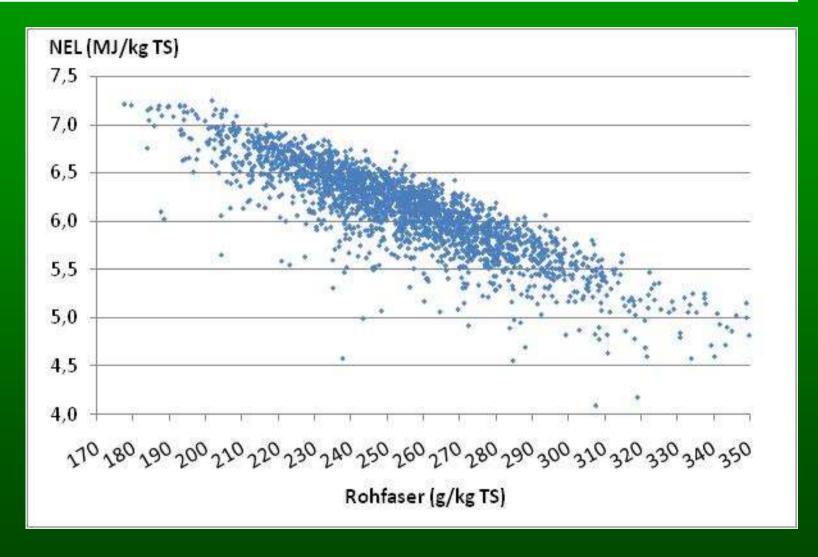
	GS1 RNS_98	GS HFT_98	Gras HFT_08
n	162	115	257
	13,99	-2,6	7,8
Ra	-0,01177		-0,00384


Rohnährstoffgleichung: B = 68,7; s% = 6,9

HFT-Gleichung: B = 82,4; s% = 4,7

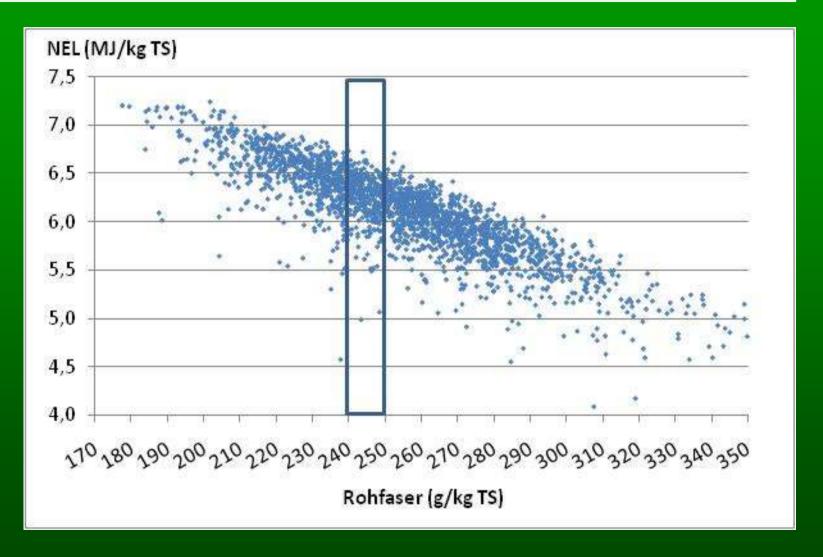
GB	0,2353	0,0756
RP* Rfa	0,00002146	
Rfe*RP	0,0002798	
Rfe*GB	-0,003768	

Schematische Darstellung des HFT

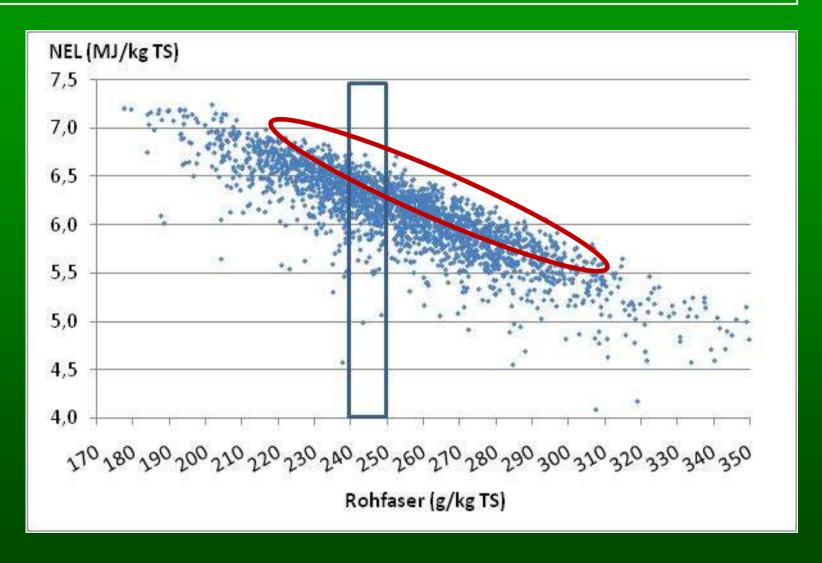

Vergleich des Energiegehaltes von Grassilage (1. Schnitt)

	NEL _{RN98}	NEL _{HFT_98}	NEL _{HFT_08}
n	1883	1883	1883
MW	6,2	5,6	6,0
STABW	0,31	0,42	0,47
Min	5,0	3,5	4,0
Max	7,0	6,8	7,4

Energiegehalt in Abhängigkeit von der Rohfaser (Grassilage 1. Schnitt 2008)



Energiegehalt bei gleicher Rohfaser


(Grassilage 1. Schnitt 2008)

Energiegehalt bei gleicher Rohfaser

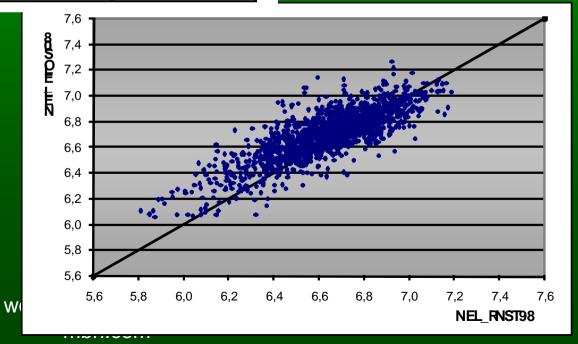
(Grassilage 1. Schnitt 2008)

Energiegehalt bei gleicher Rohfaser

(Grassilage 1. Schnitt 2008)

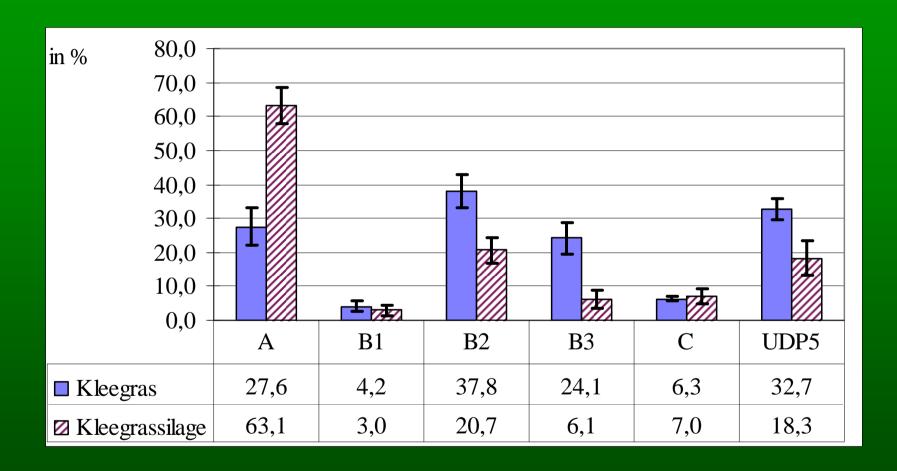
25 %	Rfa	NEL	Ra	ADForg	HFT	RP	NDF	ADL	puRp	Zucker
	g/kg TS	MJ/kg TS	g/kg TS	g/kg TS	nl/200 m	g/kg TS	g/kg TS	g/kg TS	% des RF	g/kg TS
obere	244	6,5	89	264	51	159	423	19	17	76
untere	246	5,9	101	271	43	152	435	30	24	43
Energiedi	fferenz	-0,6	-0,03	-0,04	-0,4	-0,02		X	X	\times

	MS RNS_98	MS ELOS_08
n	250	93
	14,03	7,15
Ra	-0,01018	
Rfa	-0,01386	
Rfe		0,03522
NDF _{org}		-0,00283
ELOS		0,0058
В	0,72	0,83



	NEL _{RN_98}	NELDMK	NEL _{ELOS_08}
n	1445	1445	1445
MW	6,6	6,4	6,7
STABW	0,22	0,26	0,19
Min	5,8	5,6	6,1
Max	7,2	7,2	7,3

Maissilage


	NEL_ _{RN_98}	NELDMK	NEL_ _{ELOS_08}
n	1445	1445	1445
MW	6,6	6,4	6,7
STABW	0,22	0,26	0,19
Min	5,8	5,6	6,1
Max	7,2	7,2	7,3

www.lks-mbh.com

Einfluss der Silierung von Kleegras auf die Rohproteinqualität (n=8, Richardt u. Steinhöfel, 2000)

Kennzahlen Proteinqualität - Proteinlöslichkeit (SP)

- NPN-Verbindungen und niedermolekulare, schnelllösliche Proteine
- Maßzahl für die Proteinqualität (in % des Rohproteins)
- in der Gesamtration (TMR) sollte der Wert bei etwa 35% liegen
- Grassilagen : ~ 60% (zwischen 51% und 69%)
 - über 70% = zu hohe Proteolyse und niedriges UDP
 - unter 50% = hoher Anteil an UDP oder Hinweis auf Fehlgärung(Hitzeschäden)
- Maissilagen : 52% (zwischen 44% und 60%)

Proteinlöslichkeit (%)					
< 40					
2 7 34 47 10					

Kennzahlen Proteinqualität - Durchflussprotein (UDP)

- Anteil an Rohprotein, welcher nicht im Pansen abgebaut wird
- Ableitung nach Analyse der Rohproteinfraktionen
- wird durch die Fraktionen B2, B3, C sowie durch den Fasergehalt
 (PNDF oder ADF) bestimmt
- wird in % des Rohproteins angegeben
- Zielwert in der Gesamtration (TMR) zwischen 23 und 27 %
- der Mittelwert für Grassilagen liegt bei 20% und schwankt im Normalfall zwischen 10% und 30%.

UDP (Durchflussprotein, 5% Passagerate)

Futterwert der Grassilagen 1. Schnitt 2008						
2006 2007 2008						
NEL	MJ/kg TS	5,9	6,1	6,3		
Rohprotein	g/kg TS	152	159	150		
UDP	%	25	21	21		
Min und Max Werte				6 - 51		

Kennzahlen Proteinqualität - Ammoniak

- flüchtige Stickstoffverbindung und wird zu den NPN- Verbindungen (Nicht-Protein-Stickstoff) gezählt
- entsteht durch Abbau von Eiweißverbindungen während des
 Silierprozesses und ist ein Endprodukt des Aminosäureabbaus
- Indikator für die Qualität des Silierprozesses

<8% sehr gut

8-10% gut

10-15% Hinweis auf Aminosäureabbau

>15% Hinweis auf deutlichen Aminosäureabbau

Verteilung des NH₃-Gehaltes in Grassilagen (Ernte 2003-2008)

Jahr	NH ₃ -N in % des Gesamt-N				
	< 5	5 - 10	11 - 15	> 15	
2003	18	73	<u>7</u>	2	
2004	12	66	16	6	
2005	26	71	<u>3</u>	0	
2006	49	45	5	1	
2007	20	73	6	1	
2008	23	72	4	1	

Definition Verderb (Gedeck, 1995)

Gehäuftes Auftreten von Bakterien und Schimmelpilzen, die in der Normalflora unterrepräsentiert sind.

Wirkung von Bakterien, Hefen- und Schimmelpilze auf Milchkühe

allgemeine Wirkung

- Senkung der Futteraufnahme und Milchleistung
- Immunsuppression (Schwächung der Abwehrkräfte gegen Bakterien und Viren)
- Fruchtbarkeitsstörungen, Euter- und Klauenentzündungen

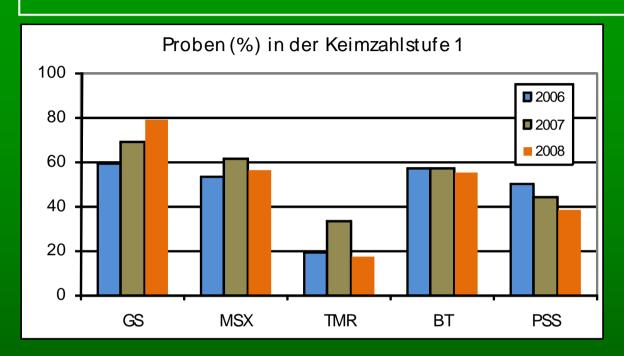
spezifische Wirkung

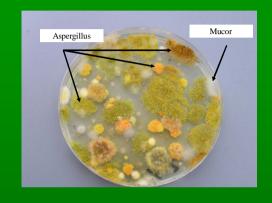
karzinogen, nephrotoxisch, neurotoxisch, hepatoxisch

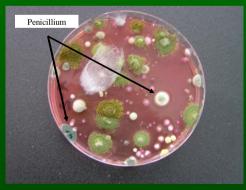
Viele Arten in der Routine nicht bestimmbar!

Orientierungswerte für Grobfuttermittel und Mischrationen

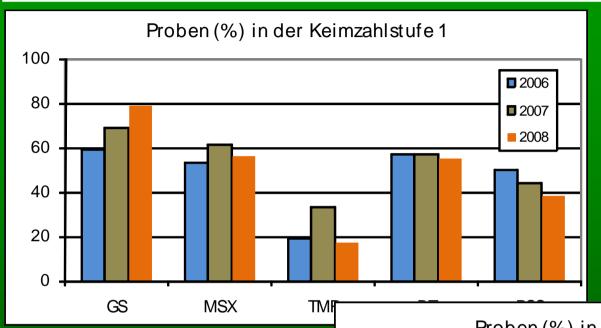
	Grassilage	Maissilage / TMR / Pressschnitzel	Heu
	k	KbE / g Futtermitte	el
Bakterien, produkttypisch	< 1 Mio	< 1 Mio	< 2 Mio
Bakterien, verderbanzeigend	< 1 Mio	< 1 Mio	< 3 Mio
Schimmelpilze, verderbanzeigend	< 5.000	< 5.000	< 100.000
Hefen	<100.000	< 1 Mio	< 100.000

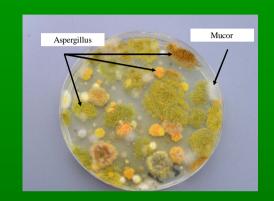

Quelle: EFMO (2004), Adler (2002), Wagner et al. (2006), LKS (2005)

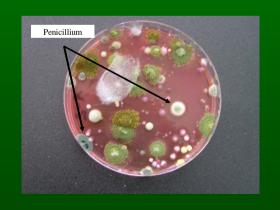

www.lks-mbh.com


wolfram.richardt@lksmbh.com

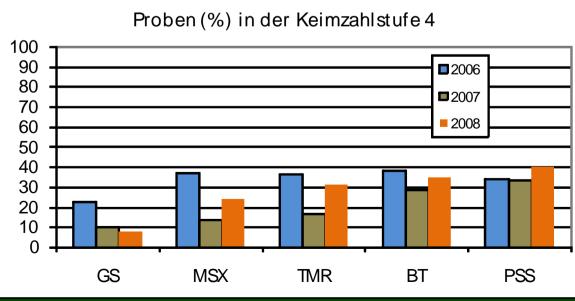
Mikrobiologische Qualität von Futtermitteln







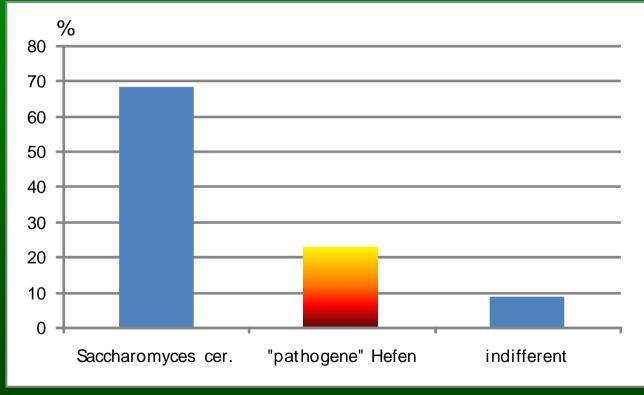
Mikrobiologische Qualität von Futtermitteln





www.lks-mbh.com

Hefedifferenzierung bei erhöhten Gehalten



Hefedifferenzierung bei erhöhten Gehalten

Grundsätze bei Probenahme und Transport von Futtermitteln für mikrobiologische Untersuchungen

- repräsentative Probenahme (5-10 Teilproben, 1 Sammelprobe)
- Vakuumierung der Probe (nicht einfrieren, nicht Konservieren)
- ▶ kühler Probentransport (4-8℃)
- > ohne Vaakuumierung und Kühlung:
 - Silagen innerhalb von 1-2 Tagen
 - > frische Proben innerhalb von 2-3 Stunden

Wirkung von Bakterien- und Schimmelpilztoxinen auf Milchkühe (Literaturauswertung)

Aflatoxin	Verminderte Milchproduktion Verminderte Futteraufnahme	Newborne (1973) Shreeve u. Patterson (1975) Cook et al. (1986)	
Ochratoxin	Verminderter Apptetit Verminderte Milchproduktion	Ribelin et al. (1978)	
Zearalenon	Verminderung der Konzeptionsrate (250 mg/Tag)	Weaver et al. (1986a) Coppock et al. (1990)	
DON	Verminderte Milchproduktion Verminderte Futteraufnahme	Noeller et al. (1979) Whitlow et al. (1986) Trenholm et al. (1985) Charmley et al. (1993)	

Grundsätze bei der Bestimmung der mikrobiologischen Qualität von Futtermitteln

- Bestimmung der vier wichtigsten Mykotoxine in der Gesamtration
- bei Grenzwertüberschreitung in Einzelfuttermittel
- Bestimmung mit ELISA (Screening)
- Bestätigung mit HPLC (bei Überschreitung)

	DON ¹⁾	Zearalenon ¹⁾	Ochratoxin ²⁾	T2-Toxin ²⁾
	μg/ kg OS (bei 88% TS)			
Gesamtration	5.000	500	20	50

¹⁾ Orientierungswerte nach Dänicke (2000)

²⁾ M. Hoffmann (1999), Literaturauswertung

Einfluss von DON und Zearalenon auf Parameter der Tiergesundheit

Dänicke et al. (J. Phys. Nutr., 2005)	50% Weizen mit 8.050 μg DON/kg TS 260 μg Zea/kg TS	Pansen pH Essig- u. Buttersaure	Mikrobenprotein Nutz. Ropprotein
Korosteleva u. Smith (J. D. Sc., 2006)	TMR mit 3.600 μg DON/kg TS	Zelzahl	Serum IgA
Seeling et al. (J. Phys. Nutr., 2006)	35% Weizen mit 8.210 µg DON/kg TS 92 µg Zea/kg TS	Leberenzyme Panschferm.	Proteinlöslichkeit