

Zurück zum Grünfutter

Wann macht das Sinn?

Dr. A. Milimonka

Priv. Doz. an der HU Berlin Spezialberatung Grundfutterproduktion AGRAVISRaiffeisenAG

Tel.: 0172 530 3182

Zurück zum Grünfutter

Wann macht das Sinn?

Gliederung

- Einführung
- Vorteile
- ✓ Inhaltsstoffe, Futterhygiene, Kosten, etc.
- Wann macht das Sinn?
- ✓ Nachteile / Grenzen
- ✓ steuerbare "Nachteile"
- Managementhinweise
- Fazit

Ausgangspositionen:

Rahmenbedingen für Milchproduktion schlecht Kosten für Betriebsmittel hoch Erlöse gering

Aufgabe der Milchproduktion nicht sinnvoll / möglich Finanzierung / Förderung soziale Verantwortung

Rahmenbedingungen zwischen den Betrieben variabel Suchen nach betrieblichen Alternativen

darunter fällt auch: Frischfutter/Weide eine sinnvolle Alternative?

Frischfutter und mögliche Vor- und Nachteile

Vorteile:

- Inhaltsstoffe primäre

sekundäre

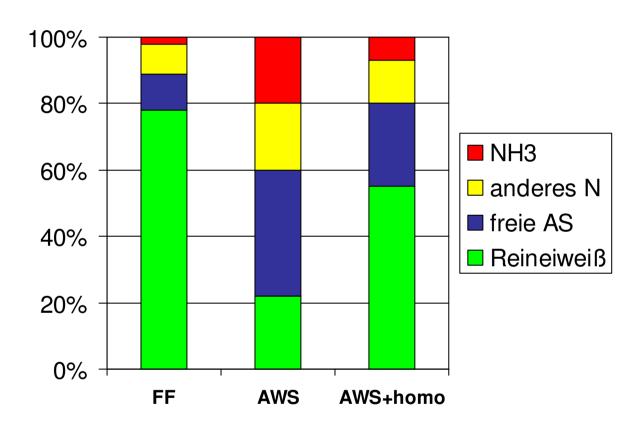
- Verluste, Futterhygiene, Vitalität Rind

- Kosten

Nachteile:

- Standortvoraussetzung
- Betriebsstruktur (Arrondierung)
- Varianz in der Qualität und Quantität
- Management

Verluste bei der Gärfutterbereitung (Zimmer 1969)


Biologischer Prozess		Energieverluste (%)
Restatmung der Pflanze	unvermeidbar	1 2
Milchsäuregärung	unvermeidbar	4 8
Sickersaft und/oder Vorwelken	unvermeidbar	2 5
sekundäre Buttersäuregärung	vermeidbar	0 >5
aerobe Umsetzungen (Befüllen)	vermeidbar	0 >10
aerobe Umsetzungen (Entnahme)	vermeidbar	0 >10
Konservierungsverluste		7 >35

Auswirkungen eines Temperaturanstiegs um 15 °C durch Nacherwärmung

Veränderung	nur der Energiedichte		der Energiedichte und	
			der Futter	aumanme
ED (MJ NEL/kg TM)	6,6	6,5	6,6	6,5
Futteraufnahme (kg TM)	15,0	15,0	15,0	14,0
Erhaltung + Milch (L)	21,0	20,5	20,0	17,5
Milchverlust (L)		0,5		2,5
Milchgeld 0,25 €/Liter; Tierbestand 100 St				
Verlust (€/Tier*Monat)		3,75	(18,75
Verlust (€/Bestand*Monat)		375,00		1875,00

Eiweißqualität in verschiedenem Grundfutter

(Jones 2001)

Wirkung von Omega-3-FS und CLA im Säugetier und Mensch

- als Antioxidanzien,
- wirken antikanzerogen (Omega-3-FS, CLA cis9 trans 11),
- mindern Ateriosklerose und Herzinfarkt Risiko
- hemmt embryonalen Frühtot (Omega-3-FS)
- hemmt selektiv Pansen-MO, weniger Methan (Omega-3-FS)
- hemmt Milchfettsynthese (CLA trans 10 cis12)

(CLA trans 9 cis 11)

Gehalt an Omega-3-FS und CLA in Futtermitteln

(Stene et al. 2000 Fievez et al. 2002)

Omega-3-FS (g/kg TM)	CLA (g/kg TM)
1,0	
1,5	
>10,0	0,15
>20,0	0,3
	(g/kg TM) 1,0 1,5 >10,0

Effekt vom Grundfutter auf Milchfettqualität (Farlay et al. 2004)

				Berggrassland	
	Konz.	SM	AW-Heu	Heu Weide	
Milch (kg/d)	13,4 ^a	13,7 a	15,6 b	15,6 b 17,1 c	
Fett (g/kg)	41,7 a	40,0 b	38,1 b	34,8 ° 35,3 °	
CLA (g/100g FS)	0,4 a	0,7a	0,9 b	0,6 b 1,7 c	
Al	3,8 a	3,0 b	3,2 b	3,0 b 1,6 c	

Ratio: 30% SM, 50% variabel, 20% Konzentrat

AI = atherogeneticity index (niedrig=hohe Ernährungsqualität)

Seite 11

Kosten von Frischfutter im Beispielbetrieb

	Betrieb	Daten LVLF
Ertrag (dt/ha TM netto)	150	90
ED (MJ NEL)	6,5	6,0
Direktkosten (€/ha)*	890*	210
Arbeitserledigung (€/ha)**	440**	965
Gesamtkosten (€/ha)	1430	1300
(ct/10 MJ)	12,0	21,0

^{*)} incl. Arbeitskosten Ausbringung

^{**)} nur Futterbergung

Ration und Leistung im Beispielbetrieb

Gras frisch (kg TM/Tier d)		10	
AWS	dto	3	
Konzentrat	dto	9	
(Getreide+Treber)			
Milch (kg/Tier	d)	33	

Zurück zum Grünfutter

Wann macht das Sinn?

Nachteile Frischfutter

Nicht unter allen betrieblichen Gegebenheiten umsetzbar

- Wasserversorgung im Sommer !!
- Standortheterogenität
- Arrondiertheit des Betriebes, Entfernung Futter Stall
- Kontinuität der Versorgung
 - Quantität
 - Qualität
- Management

steuerbar

Stickstoff und Wasser

Wir helfen wachsen.

Transpirationsquotient TK

= Wasserverbrauch/Biomasseeinheit

Liter Wasser/kg TM mm/100 dt TM ha

Gras gedüngt 450 mm ungedüngt 600 mm Luzerne 700 mm Mais 300 mm

Niederschlag: 350 mm

Bodenwasser: 50 mm

Gesamt: 400 mm

Ertragspotential

Gras gedüngt 120 dt/ha

ungedüngt 65 dt/ha

N-Entzug NUE, NNI

kg N/kg TM kg N/kg N

Gras gedüngt 2..3 kg N/dt TM ungedüngt 1,5..2

angeaungt i,en_

Mais 1,4 kg N/dt TM

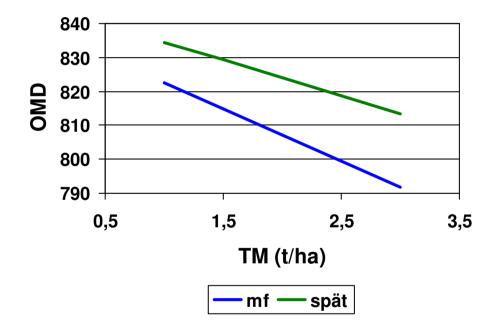
Ertragspotential

Gras gedüngt 120 dt/ha

N-Bedarf 300 kg/ha

N_{min} 50 kg/ha

Dünger-N 250 kg/ha



Leistungspotentiale verschiedener Grasarten

	Ertrag (dt/ha TM)	ED (MJ NEL/kg TS)
Welsches Weidelgras	130200	7,0
Wiesenschweidel	120180	6,7
Deutsches Weidelgras	110150	6,8

Effekt von Reifegruppen und Ploedie auf die Futterqualität

Veränderung der Verdaulichkeit beim Dt. Weidelgras

(Humphreys & Kiely 2002)

Betriebliche Gegebenheiten

Standortvarianz:

- Wasserversorgung, Erwärmung, Vegetation
 - = Nutzungstermine des GL
- > (Beregnung)
- > weidelgrasbetonte Bestände
- Varianz der Sorten nutzen
- Ackerfutter

Management / Betreib:

- tägliches Begehen der Futterflächen
- hohe Variabilität bei allen Entscheidungsmöglichkeiten
- ✓ Variabilität der Flächennutzung
- ✓ Variabilität der Futterkonservierung
- Arrondiertheit Futter MVA

Fazit

- Frischfutter hat Vorteile
- ✓ verbessert die Produktqualität der Milch
- ✓ wirkt positiv auf Tiergesundheit (wiederkäuergerecht, Inhaltsstoffe)
- ✓ kein Risiko Futterhygiene
- Frischfutter als Kostenfaktor
- ✓ senkt die Rationskosten (FF / Silage, verdeckte Kosten Futterhygiene)
- geeignete Standortbedingungen (Wasser, Varianz, Arroundierung)
- Nutzen des Arten und Sortenpotentials

Zurück zum Grünfutter?

Grünfutter

- eine Alternative!
- eine Herausforderung ans Management

Wir helfen wachsen.

Einfluß der Fütterung von CLA auf die Milchbildung beim Rind (Liemann & Schwarz 2006)

	Kontrolle	CLA
Milch (kg/d)	32,8	34,9
Futteraufnahme (kg/d)	17,3	18,0
Fett (%)	3,82	3,09
Eiweiß (%)	3,0	2,9
Ø Energiedefizit (MJ NEL)	10,6	4,3