L 28

1966 - 2009

Effiziente Nährstoffverwertung Wirkung der N-Düngung bei unterschiedlicher organischer Düngung in Fruchtfolgen

Dauerversuch organische Düngung N-Düngung

1. Versuchsfrage:

Die Auswirkung einer langjährig differenzierten mineralisch-organischen Düngung werden auf die Ertragsleistung einer Fruchtfolge, auf die Nährstoffbilanz, auf die Ertragsbildung, auf wichtige Bodeneigenschaften sowie auf die Tiefenverlagerung von Nitrat untersucht.

2. Prüffaktoren:

Faktor A: organische Düngung Versuchsorte Landkreis Prod.gebiet

Stufe:3MethauMittelsachsenLöFaktor B:N-Düngung (mineralisch)SprödaNordsachsenD

Stufe: 6

3. Versuchsanlage:

zweifaktorielle Spaltanlage mit 4 Wiederholungen

4. Auswertbarkeit/Präzision:

Der langjährige Dauerversuch ist sehr komplex und gestattet vielfältige Auswertungen. Die Präzision ist meist ausreichend.

5. Versuchsergebnisse:

PG	organische	mineral.	Methau 2006 – 2009			Spröda 2006 – 2009			
	Düngung	Düngung kg/ha	Humus %	N-Saldo kg/ha	GE-Ertrag dt/ha	Humus %	N-Saldo kg/ha	GE-Ertrag dt/ha	
11	ohne	0	1,71	- 89	72,2	1,20	- 61	50,9	
12	ohne	50	1,79	- 70	99,5	1,18	- 45	68,4	
13	ohne	100	1,69	- 47	110,6	1,15	- 21	78,1	
14	ohne	150	1,76	-27	115,5	1,30	10	83,8	
15	ohne	200	1,61	9	118,0	1,20	50	80,4	
21	Stallmist	0	2,30	- 64	97,3	1,38	- 29	64,6	
22	Stallmist	50	2,25	- 48	114,3	1,50	- 14	78,2	
23	Stallmist	100	2,38	- 20	122,2	1,38	15	87,7	
24	Stallmist	150	2,61	5	122,7	1,58	45	92,2	
25	Stallmist	200	2,31	44	128,2	1,45	85	88,6	
31	Stroh	0	1,71	-78	71,4	1,25	- 59	50,2	
32	Stroh	50	1,79	- 56	95,5	1,25	- 39	71,7	
33	Stroh	100	1,88	- 36	118,9	1,18	- 10	77,4	
34	Stroh	150	1,84	- 4	117,6	1,30	19	79,1	
35	Stroh	200	1,87	26	119,6	1,28	59	82,7	

6. Schlussfolgerungen/Handlungsbedarf:

- Die Erträge der letzten Fruchtfolgerotation (ZR, SG, Kart., WW) zeigten nach 40-jähriger differenzierter organischer Düngung eine starke Reaktion auf steigende mineralische N-Gaben. Bei Stallmistdüngung lagen die Erträge durchweg auf höherem Niveau als bei unterlassener organischer Düngung oder Strohdüngung. Das trifft vor allem für den Löss-Lehm in Methau zu.
- Die Stallmistwirkung war bei unterlassener mineralischer N-Düngung am stärksten und nahm mit steigender N-Aufnahme ab. Eine volle Substitution des Stallmisteffektes ist auch durch maximale mineralische N-Zufuhr nicht möglich.
- Strohdüngung führte im Vergleich zu den Prüfgliedern mit reinem mineralischen N-Einsatz zu keinen höheren Erträgen.
- Für optimale Erträge reichten auf dem Löss-Lehm annährend ausgeglichene und auf dem anlehmigen Sand leicht positive N-Bilanzsalden aus. Bei Stallmist waren immer etwas höhere N-Salden für Optimalerträge erforderlich.
- Die Humusgehalte lagen bei langjähriger Stallmistzufuhr im Vergleich zu ohne organische Düngung auf höherem Niveau und zwar vor allem auf dem Löss-Lehm-Standort Methau. Strohdüngung beeinflusste dagegen den Humusgehalt nur geringfügig.

Versuchsdurchführung: LfULG	Themenverantw.:	Abt. 7 - Pflanzliche Erzeugung	Erntejahr
ArGr Feldversuche	Referat:	71 Pflanzenbau, Nachwachsende Rohstoffe	
Ref. 76, Frau Trapp	Bearbeiter:	Herr Dr. habil. Albert	2006 - 2009