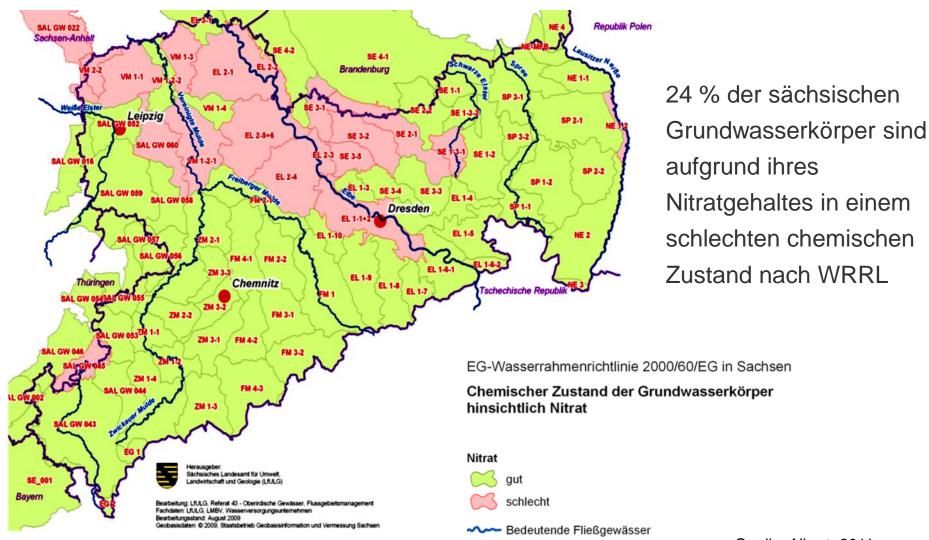
LANDESAMT FÜR UMWELT,
LANDWIRTSCHAFT
UND GEOLOGIE

Freistaat
SACHSEN


Geringere N-Bilanzen und Qualitätsgetreideanbau, ein lösbares Problem?

Groitzsch, 10.09.2013, Dr. Michael Grunert

Grundwasserkörper in Sachsen chemischer Zustand Parameter Nitrat

N-Bilanz

Vorgabe: max. 60 kg N/ha (Flächenbilanz, Ø der drei letzten Düngejahre)

Zufuhr:

- mineralische u. organische N-Düngung
- legume N-Bindung
- (nicht: N-Deposition)

Abfuhr:

- Abfuhr mit Erntegut
- (nicht: Verluste, N in verbleibenden Koppelprodukten, Denitrifikation)

Reaktionsmöglichkeiten:

im gesamten Betrieb:

- N-extensive Kulturen aufnehmen oder Intensität senken?
- Zwischenfrüchte, organische Düngung, Schlagbilanzierung ...

im Getreideanbau:

- Qualitätskriterien ändern?
 - => kurz- und mittelfristig eher unwahrscheinlich
- Strategie im Qualitätsgetreideanbau ändern?
 - => Anteil senken, niedrigere Qualitätsstufe akzeptieren?
- pauschal N-Düngung senken?
- höhere N-Effizienz (und in der Folge: geringere N-Düngung)?

N-Saldo < 60 kg/ha ist kein Garant für < 50 mg NO₃/l Sickerwasser

Mehr gesetzliche Auflagen? Was wird u.a. diskutiert? (Auswahl)

- neue Düngebedarfsermittlung
- Aufzeichnungspflicht der Düngebedarfsermittlung
- Einschränkungen bei der Herbst-N-Düngung (Sperrzeiten, Einschränkung der Kulturarten, ...)
- Ausbringungsverbot auf gefrorene und schneebedeckte Flächen
- Einschränkungen bei Ausbringung auf geneigten Flächen
- Bestrafung bei Überschreitungen der Bilanzgrenze
- Senken der Bilanzgrenzen
- Einführung von Dünge-Obergrenzen
- Stickstoff-Steuer
-

Die weiter Verbesserung der Ist-Situation ist sicher der angenehmere, evtl. auch der einfachere Weg!

Einfach geringere N-Düngung?

bei bereits optimaler Düngung:

- nur begrenzte Reduzierung der 1./2. N-Gabe möglich (sinkender Ertrag)
- unter den gegebenen Bedingungen (Qualitätsvorgaben) nur begrenzte Reduzierung der 3. N-Gabe möglich (Gefährdung der Qualität - RP %)
- => geringere N-Düngung ist nur begrenzt möglich und dann auch nur ein Teil der Lösung

Hier und bei allen weiteren Punkten: wesentlich sind die Spezifika und der erreichte Stand im jeweiligen Betrieb

- Standort
- Betriebsstruktur
- Produktions- und Intensitätsniveau
- Wissen, Erfahrungen, Reserven

N-Effizienz steigern

- höheres N-MDÄ der organischen Düngung
- exakte schlagspezifische Düngebedarfsermittlung
- realistische Ertragsziele
- gezielter Einsatz spezieller Techniken/Düngemittel (N-Injektion, stabilisierte Düngemittel ...)
- Herbstgaben nur in Ausnahmefällen
- teilschlagspezifische Bewirtschaftung
- exakte Applikation

-

=> geringere N-Düngung gleiches Ergebnis bei Ertrag und Qualität höhere Wirtschaftlichkeit geringerer N-Bilanzüberschuss

N-Gaben im Herbst?

- in Ausnahmefällen ist N-Vorrat im Boden so gering, dass es zu
 Mangelerscheinungen vor allem bei Winterraps und Wintergerste kommen kann
- N-Mangel am ehesten unter folgenden Bedingungen:
 - Vorfrüchte die nur wenig N im Boden hinterlassen (Getreide, Gräser)
 - Einarbeitung großer Strohmengen
 - sehr hohe Erträge der Vorfrucht Getreide bei verhaltener N-Düngung
 - keine organische Düngung (Stallmist, Gülle) in der Fruchtfolge
 - schlechte Bodenstruktur, grobes Saatbett, Verdichtungen im Oberboden
- unter derartigen Bedingungen kann N-Zufuhr im Herbst zu Winterraps, Wintergerste, Winterzwischenfrüchten oder Feldgras gerechtfertigt sein; bei anderen Wintergetreidearten besteht in der Regel kein Düngebedarf
- Ausgleichsdüngung zu Getreidestroh nur dann, wenn Winterraps, Wintergerste, Winterzwischenfrüchte oder Feldgras angebaut werden

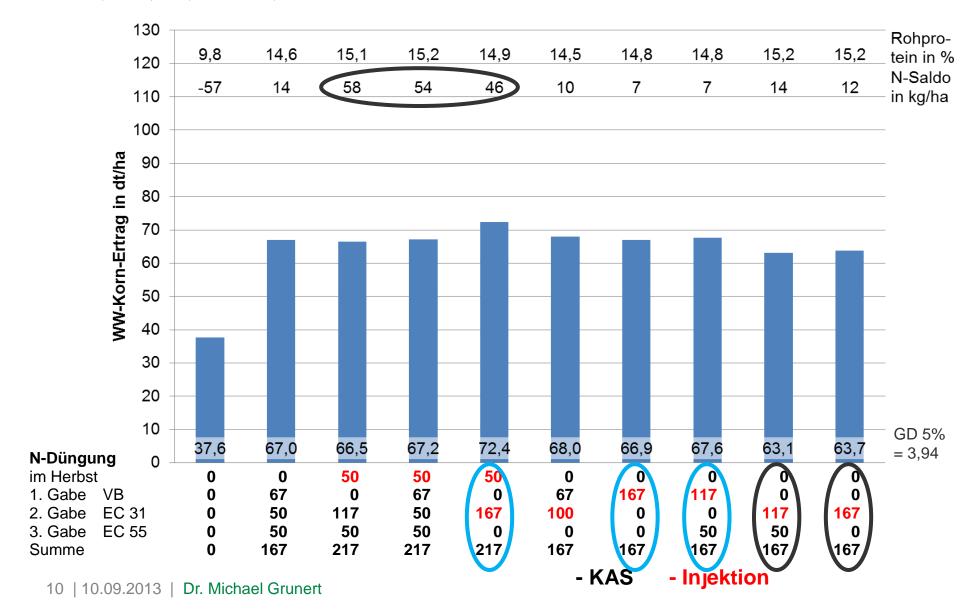
- N-Aufnahme bei normaler Herbstentwicklung:

Wintergerste	30 - 50 kg N/ha
Winterroggen, Triticale	30 - 50 kg N/ha
Winterweizen	10 - 30 kg N/ha
Winterraps	50 - 80 kg N/ha

Höhere N-Effizienz aus organischer Düngung (Auswahl)

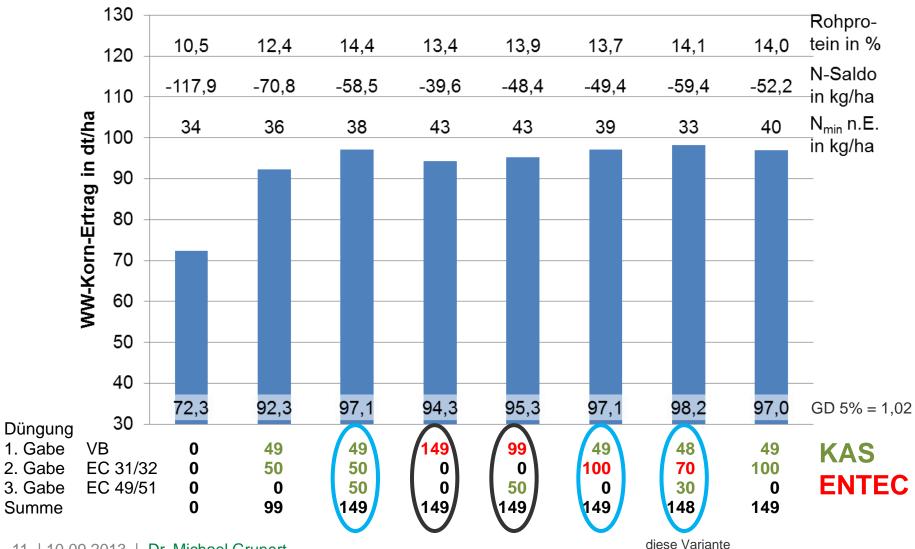
- Ausbringung organischer Dünger nur bei Nährstoffbedarf des Pflanzenbestandes (im Herbst kaum zu Getreide)
- regelmäßige Bestimmung der Nährstoffgehalte
- fachgerechte Anrechnung auf den N-Bedarf
- Einarbeitung flüssiger organischer Düngemittel ohne Pflanzenbestand: sofort (mind. 4 h) auch im Bestand (Schlitztechnik)
- Platzierung im Boden (strip-till-Verfahren)
- ggfs. Einsatz von Nitrifikationsinhibitoren
- Beachtung der Schlag-Spezifika (Humusbilanz, Nährstoffgehalte, pH)
- Optimierung der Verteilgenauigkeit
- evtl. Teilschlag-spezifische Ausbringung

N-Injektion zu Winterweizen



re: 1.Gabe: 0; 2.Gabe: 160 kg N-Injektion

N-Injektion zu Winterweizen Baruth, D3, IS, AZ 30; 2010 - 2012



stabilisierter N-Dünger ENTEC zu Winterweizen (Vergleich zu KAS)

LANDESAMT FÜR UMWELT LANDWIRTSCHAFT UND GEOLOGIE

Lö-Standort Pommritz, 2004 - 2012

N-Düngung Verteilgenauigkeit

Bestandesunterschiede durch ungenügende Verteilgenauigkeit von N-Düngern sind bis in Reifestadien erkennbar und bewirken:

=> Differenzierungen in: Abreife

Ertrag

Qualität

N-Bilanz

Lagerbildung

.

28.04.2013

28.05.2013

19.07.2013

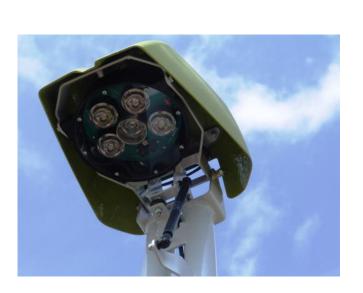
N-Düngung Verteilgenauigkeit

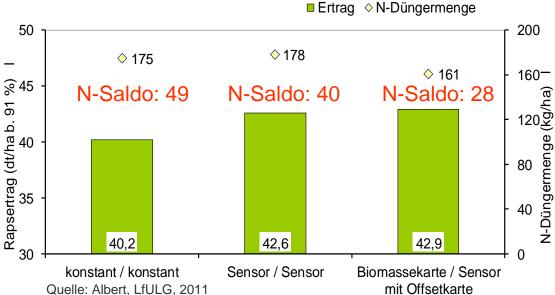
Streufehler sind erst ab 30 % Streuungenauigkeit sichtbar (yara, 06/2013)

+/- 34 % N-Düngung bei 1.+2. N-Gabe zu Winterweizen bedeuten: (Parzellenversuch Forchheim, V, Ø 2001-12; zusätzlich einheitliche 3. N-Gabe von 60 kg N/ha)

1.+2.Gabe		Ertrag	RP	Erlös	N-Bilanz
kg N/h	a	dt/ha	%	€/ha	kg N/ha
- 34 % N	58	82,0	12,9	1.456 (-134)	-43
optimal	88	85,9	13,2	$1.589 (\pm 0)$	-23
+ 34 % N	118	87,9	13,3	1.626 (+ 37)	+ 1

teilschlagspezifische N-Düngung (Bestandes- und Boden-abhängig)



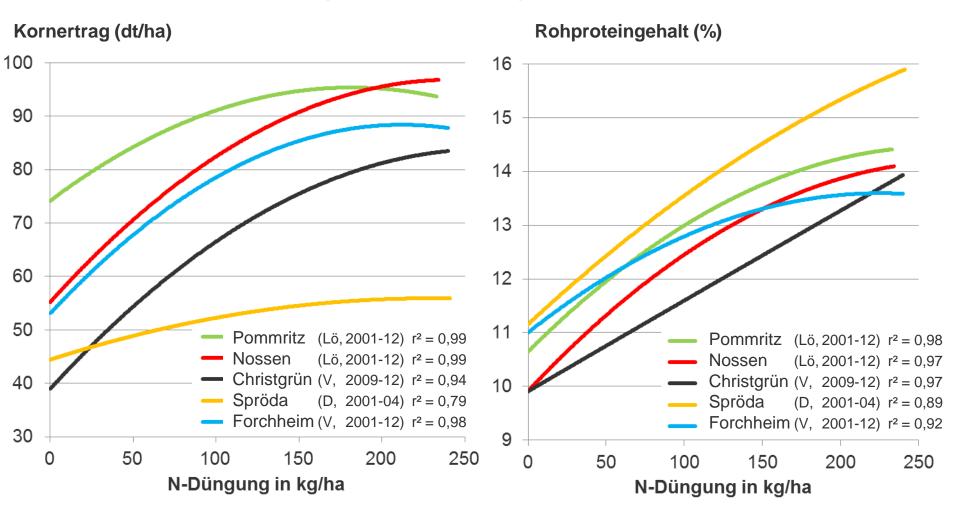

Vorteile bei uneinheitlichen Standorten:

- einheitliche Bestände (Qualität, Reife, Beerntbarkeit)
- höhere Nährstoffeffizienz
- geringere Nährstoffsalden
- verbesserte Wirtschaftlichkeit
- (höhere Erträge)

.

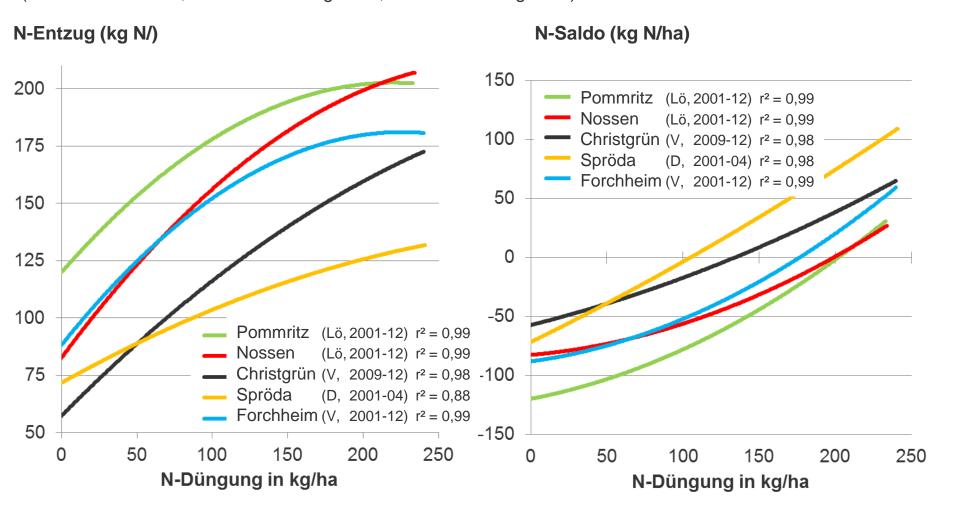
14 | 10.09.2013 | Dr. Michael Grunert

Parzellenversuche zur Ermittlung des N-Düngebedarfs von Winterweizen



PG	N-Dü	ingung (kg l	N/ha)	N-Düngung gesamt im Mittel der Jahre (kg N/ha)							
	1. Gabe EC 23	2. Gabe EC 32	3. Gabe EC 55	Forchheim (V) 2001-2012	Nossen (Lö) 2001-2012	Pommritz (Lö) 2001-2012	Christgrün (V) 2009-2012				
1	0	0	0	0	0	0	0				
2	roduniort	0	60	88	85	83	90				
3	reduziert (BEFU -	30	60	118	115	113	120				
4	30 kg)	60	60	148	145	143	150				
5	30 kg)	90	60	178	175	173	180				
6	mittleree	0	60	118	114	113	120				
7	mittleres Niveau	30	60	148	144	143	150				
8	(BEFU)	60	60	178	174	173	180				
9	(BLI O)	90	60	208	204	203	210				
10	erhöht	0	60	148	144	143	150				
11	(BEFU +	30	60	178	174	173	180				
12	30 kg)	60	60	208	204	203	210				
13	JU Ng)	90	60	238	234	233	240				
14	BEFU	NST	NST	151	160	137	201				
15	BEFU	N-Tester	N-Tester	201	206	160	199				
16	N-Simul.	N-Simul.	N-Simul.	171	177	149	184				

Ertrag und Rohproteingehalt von Winterweizen in Abhängigkeit von der N-Düngung


(Parzellenversuche, 1./2. N-Gabe abgestuft, 3. N-Gabe 60 kg N/ha)

N-Entzug und N-Saldo im Winterweizenanbau in Abhängigkeit von der N-Düngung

(Parzellenversuche, 1./2. N-Gabe abgestuft, 3. N-Gabe 60 kg N/ha)

Wirkung gestaffelter N-Düngung beim Anbau von Winterweizen

LANDESAMT FÜR UMWELT LANDWIRTSCHAFT UND GEOLOGIE

Lö-Standort Pommritz, 2001 – 2012, A-Weizen-Sorte

	N. Düngung (kalka) France DD Brain Qual off Mahalaiatung N. Calda N. Calda I											
			Ertrag	RP	Preis	Qual.	eff. Mehrleistung	N-Saldo	N-Saldo Diff.			
Prüfglied	1.	2.	3.	N ges.	dt/ha	%	EUR/dt	stufe	EUR/ha	kg N/ha	zu Standard	
1	0	0	0	0	74,0	10,6	17,00	С	0	-119	-94	
2	23	0	60	83	88,8	12,9	17,75	В	214	-90	-65	
3	23	30	60	113	93,2	13,2	18,50	Α	323	-72	(-47)	
4	23	60	60	143	94,6	13,6	18,50	Α	320	-50	-25	
5	23	90	60	173	95,2	14,1	18,50	A+	304	-28	-3	
6	53	0	60	113	92,3	13,2	18,50	Α	313	-70	-45	
7	53	30	60	143	94,3	13,5	18,50	Α	315	-48	-23	
8	53	60	60	173	94,9	13,9	18,50	Α	299	-25	0	
9	53	90	60	203	94,5	14,3	18,50	A+	264	0	25)	
10	83	0	60	143	94,2	13,5	18,50	Α	320	-48	-23	
11	83	30	60	173	94,7	13,9	18,50	Α	294	-24		
12	83	60	60	203	94,7	14,1	18,50	A+	268	2	27	
13	83	90	60	233	94,6	14,4	18,50	A+	240	29	54	
BEFU/NO3-Test	48	38	51	137	94,3	13,6	18,50	Α	320	-55	-30	
BEFU/N-Tester	48	59	53	160	95,2	13,6	18,50	Α	315	-35	-10	
N-Simulation	40	49	60	149	94,8	13,7	18,50	Α	317	-45	-20	

A+ = E nach RP, aber Bezahlung nicht sicher

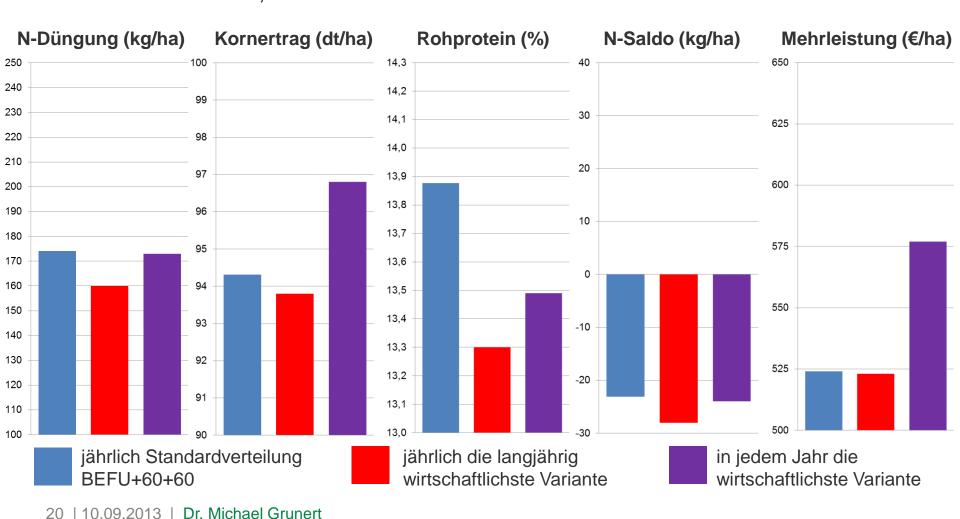
Quelle: Schaerff, 2013

nach Daten R 71 LfULG

Wirkung gestaffelter N-Düngung beim Anbau von Winterweizen

LANDESAMT FÜR UMWELT LANDWIRTSCHAFT UND GEOLOGIE

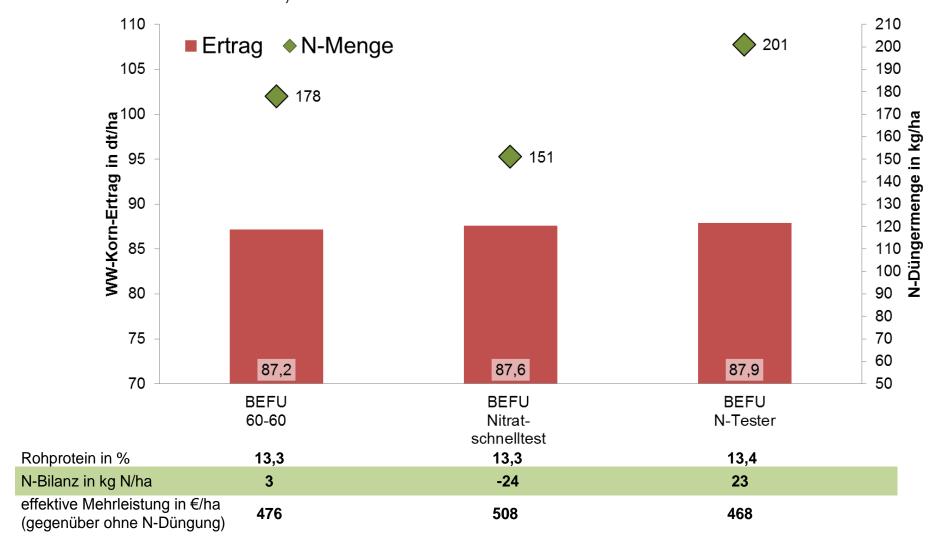
Lö-Standort Nossen, 2001 – 2012, A-Weizen-Sorte


	NI F)ünau	na (k	n/h a \	Ertroa	RP	Droic	Oual	eff. Mehrleistung	N-Saldo	N-Saldo Diff.
	7 7 7		Ertrag		Preis						
Prüfglied	1.	2.	3.	N ges.	dt/ha	%	EUR/dt	stufe	EUR/ha	kg N/ha	zu Standard
1	0	0	0	0	56,4	9,8	17,00	С	0	-84	-61
2	25	0	60	85	75,8	12,6	17,75	В	273	-59	-36
3	25	30	60	115	84,8	12,7	17,75	В	389	-48	-25
4	25	60	60	145	91,4	13,2	18,50	Α	539	-37	-14
5	25	90	60	175	93,8	13,5	18,50	Α	553	-16	7
6	54	0	60	114	84,0	12,8	17,75	В	382	-47	-24
7	54	30	60	144	90,6	13,0	18,50	Α	526	-34	-11
8	54	60	60	174	94,3	13,9	18,50	Α	563	-23	0
9	54	90	60	204	95,6	13,9	18,50	Α	558	4	27
10	84	0	60	144	90,6	13,1	18,50	Α	532	-35	-12
11	84	30	60	174	93,5	13,5	18,50	Α	549	-15	8
12	84	60	60	204	95,3	13,9	18,50	Α	553	4	27
13	84	90	60	234	95,5	14,3	18,50	A+	530	29	52
BEFU/NO3-Test	57	53	51	160	93,8	13,3	18,50	Α	566	-28	-5
BEFU/N-Tester	57	84	65	206	95,4	13,9	18,50	Α	554	6	29
N-Simulation	56	58	63	177	93,9	13,6	18,50	Α	553	-15	8

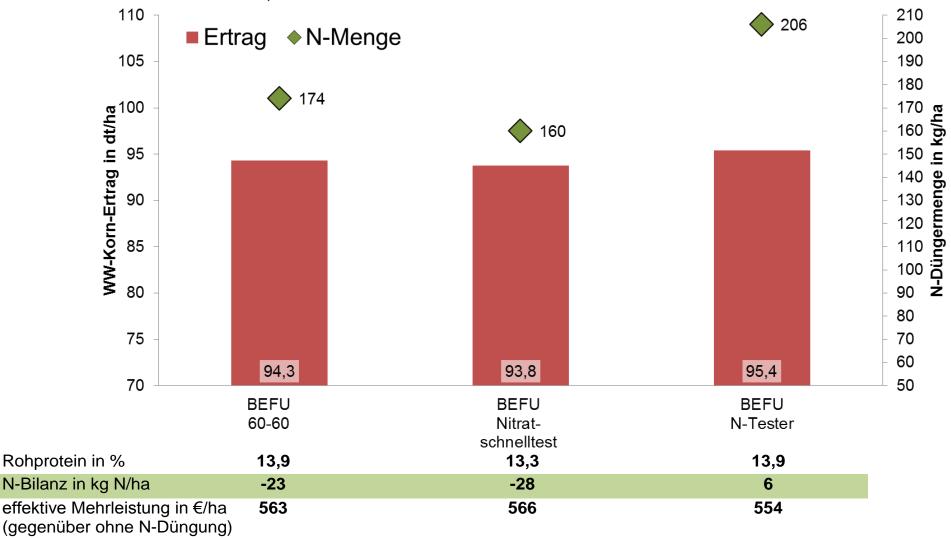
A+ = E nach RP, aber Bezahlung nicht sicher

Quelle: Schaerff, 2013

nach Daten R 71 LfULG


N-Düngung zu Winterweizen Vergleich einer Standardverteilung mit Vergleich besten Variante und der jährlich besten Variante Lö-Standort Nossen, 2001 - 2012

Vergleich von Verfahren der N-Bedarfsermittlung zu Winterweizen LA V-Standort Forchheim, 2001 - 2012



Vergleich von Verfahren der N-Bedarfsermittlung zu Winterweizen LA

LANDESAMT FÜR UMWELT LANDWIRTSCHAFT **UND GEOLOGIE**

Lö-Standort Nossen, 2001 - 2012

Wirkung der N-Spätdüngung auf Ertrag, Rohproteingehalt, N-Ausnutzung,

N_{min}-Gehalt nach der Ernte und effektive Mehrleistung

(Sorte: Tarso, 24 Versuche)

N-Spätgabe kg/ha	Korn ertrag dt/ha	Rohprotein gehalt %	- N-Ausnutzung der Spätgabe %	'	
0	79,1	11,9		38	0
20	80,8	12,7	62	40	60
40	81,2	13,2	50	44	108
60	82,4	13,7	46	56	110
80	82,6	14,0	41	61	93
GD _{5 %}	GD _{5 %} 0,7				

A (13,1 - 14,0 % RP): B (12,0 - 13,0 % RP): C (<12,0 % RP):

18,50 €/dt 17,75 €/dt 17,00 €/dt

LANDESAMT FÜR UMWELT

LANDWIRTSCHAFT **UND GEOLOGIE**

> 1 kg N: 1,00 € 1 Überfahrt: 10 € /ha

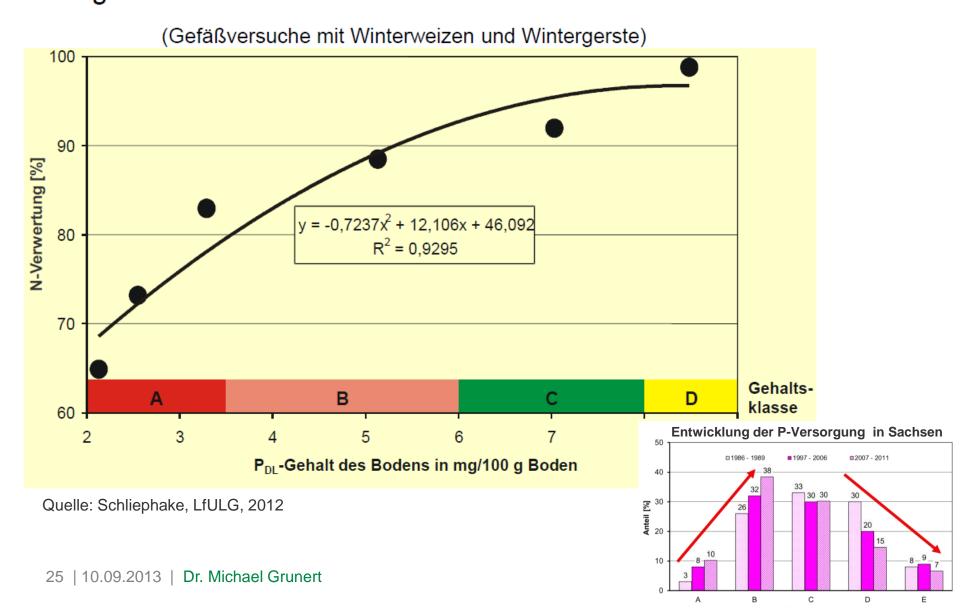
Quelle: nach: Albert, LfULG, 2012 aktualisiert

späte N-Düngung zu Winterweizen unter dem Gesichtspunkt N-Bilanz und Nitratverlagerung

Situationen, die gegen eine späte Stickstoffgabe sprechen:

- Bestände, die ein niedriges Ertragspotenzial erwarten lassen
- ertragsschwache Standorte und Bestände, die bereits an Trockenstress litten
- bereits reichliche N-Versorgung bis zum Ährenschieben
- bereits hohe N-Nachlieferung und kein N-Bedarf zum Ährenschieben bis zur Reife angezeigt (z. B. Standorte mit regelmäßiger organischer Düngung)
- kranke bzw. nicht standfeste Bestände

notwendig ist eine späte Stickstoffgabe:


- für die Erzeugung von Qualitätsweizen
- aktuell hohe Ertragserwartung der Bestände
- ertragsstarke Standorte mit guter Wasserversorgung
- verhaltene N-Versorgung bis zum Ährenschieben
- nicht abgedeckter N-Bedarf Ährenschieben bis Reife
- gesunde und standfeste Bestände

Quelle: Schliephake, Müller, LfULG, 2012

Stickstoffverwertung in Abhängigkeit von den verfügbaren P-Gehalten im Boden

Neue Methodik für die N-Düngebedarfsermittlung im Rahmen der Novellierung

im Rahmen der Novellierung der Düngeverordnung?

Wichtigstes Ziel der Überarbeitung der Düngeverordnung:

- Grundwasserwerte weiter verbessern
- Ziele der Nitratrichtlinie langfristig zu erreichen

zukünftige Düngebedarfsermittlung (derzeit nur als Vorschlag):

- Deutschland anhand eines einheitlichen Sollwertesystems
- verpflichtend für alle Betriebe mit Aufzeichnungspflicht der Berechnung
- für alle Kulturen sind deshalb Sollwerte festgelegt worden
- einheitliches System, um Zu- und Abschläge in Ansatz zu bringen

Stickstoffdüngeempfehlungen Harmonisierung auf Bundesebene

AK "Düngeberatung und Nährstoffhaushalt" im VLK

				Gesamtsollwerte*),kg N/ha (Nmin-Vorrat aus 0 bis 90 cm)													
Frucht	Ertrags- niveau, dt/ha			aktuelle Länderempfehlungen													
		Deutsch- land	BB	BW	BY	HE	MV	NI	NRW	RP	SH		ST		Mittel	von	-
Raps-W	40	200	175	200	210	200	200	200	200	215	190	215	200	200	200	175	215
Weizen-W A,B	80	230	180	210	250	220	240	250	220	240	220	220	220	230	225	180	250
Weizen-W C	80	210	140	200		210	210	230	220	220	210	180	200		202	140	230
Weizen-W E	80	260	180	240	280	230	250	250	240	255		230	220	250	239	180	280
Gerste-W	70	180	130	170	210	170	170	190	180	203	150	170	160	140	170	130	230
Roggen-W	70	170	140	160	190	170	180	150	180	169	150	190	150	130	163	140	190
Triticale-W	70	190	140	180	210	190	150	190	190	195	170	190	160	150	176	140	210
Gerste-S	50	140	90	130	150	170	120	140	150			140	140	130	136	90	170
Körnermais	90	200	175	190	190			180	190	180		220		180	188	175	220
Silomais	450	200	200	210	190		180	180	190	195	180	190	170	190	189	170	210
Zuckerrübe	650	170		190	170	160	175	160	180	195	160	160	140	160	16 8	140	195
											_						

^{* =} Gesamtsollwert entspricht dem für die gesamte Vegetation notwendigen Stickstoffangebot, bestehend aus Nmin-Vorrat im Frühjahr, N-Mineralisation während der Vegetation und zugeführter N-Düngung

Bisher Das Konzept gilt als Basis bzw. Ausgangspunkt für die Stickstoffdüngebedarfsermittlung. Die aufgelisteten Gesamtsollwerte sind für das angegebene Ertragsniveau gültig. alles nur Daneben aufgeführt sind zum Vergleich die aktuellen Werte in den Bundesländern. vorläufig!

Korrekturfaktoren

Ertrags-abhängige Gesamtsollwert-Korrekturen Vorfrucht

Bestandesentwicklung zu Vegetationsbeginn

Standort

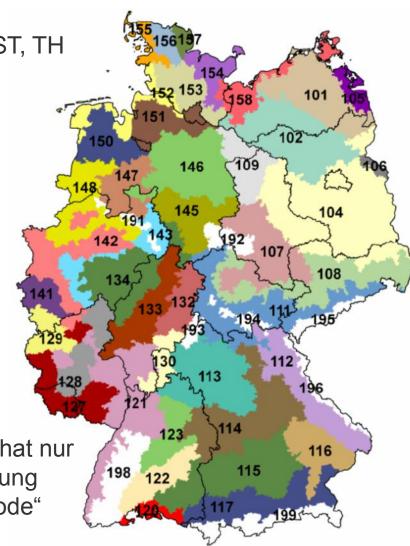
Zwischenfrucht

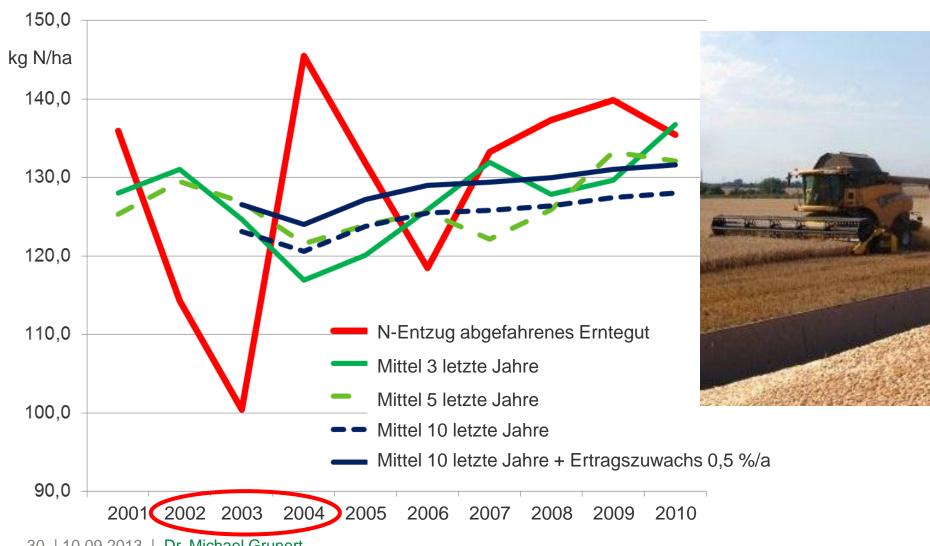
langjährige organische Düngung

Nachwirkung der organischen Düngung im Herbst

Ergebnis

Gesamt-N-Düngebedarf für den konkreten Schlag


N-Düngebedarfsermittlung Umsetzung als EDV-Programm


- ein Programm für Bundesländer BB, MV, SN, ST, TH

 bundesweit einheitliche Methodik, Sollwerte, Korrekturfaktoren

- Berechnungsbausteine teilweise aus BEFU
- Boden-Klima-Räume (BKR) als Grundlage, einheitliche Empfehlungshöhen auch für länderübergreifende BKR
- Programmierung im LfULG
- erhebliche Umstellung gegenüber BEFU
 - Berechnung einer Empfehlung für Gesamtbedarf und getrennt für Gaben 1 bis 3 (BEFU, SBA "nur" für erste Gabe)
 - daher Hinweis: "Berechnung 2. und 3. Gabe hat nur orientierenden Charakter, unbedingt Festlegung mit Bestandsabhängiger Bestimmungsmethode"

Was sind realistische Ertragsziele? LANDESAMT FÜR UMWELT Beispiel: schwankender N-Entzug **UND GEOLOGIE** auf sächsischen Dauertestflächen (über alle Kulturarten)

Freistaat

Zusammenfassung

- hohe Getreidepreise und hohe Rohproteinforderungen führen bei Optimierung nach rein wirtschaftlichen Gesichtspunkten zu z.T. sehr hoher N-Düngung zu steigenden N-Salden
- aus ökonomischer und ökologischer Sicht erforderlich: Steigerung der N-Effizienz Senkung der N-Salden und N-Verluste
- Ansätze und Lösungsmöglichkeiten im Qualitätsweizenanbau Überdenken der Qualitätsanforderungen in der Fruchtfolge

Geringere N-Bilanzen und Qualitätsgetreideanbau schließen sich nicht aus. stellen aber hohe Anforderungen an den Landwirt.

Vielen Dank für Ihre Aufmerksamkeit!

