| 003       | Mähstandweideverfahren mit Rindern | Dauerversuch   |
|-----------|------------------------------------|----------------|
|           |                                    | Mähstandweide  |
| 2009-2013 |                                    | Weideverfahren |

### 1. Versuchsfrage:

Auswirkungen des Mähstandweideverfahrens mit Rindern bei unterschiedlicher Intensität (mit und ohne mineralischen Stickstoff) auf die tierische Leistung sowie Ertrag, Qualität und Entwicklung des Pflanzenbestandes

#### 2. Prüffaktoren:

Faktor A:SystemVersuchsorteLandkreisProd.gebietStufe:3ChristgrünVogtlandkreisV 6

**3. Versuchsanlage:** Demonstrationsversuch

### 4. Auswertbarkeit/Präzision:

In den Versuchsjahren 1998 bis 2008 wurde das Mähstandweideverfahren reduziert (max. 120 kg N/ha einschl. Weideexkremente) und extensiv (ohne mineralische Stickstoffdüngung) mit Mastochsen und Färsen (1998 bis 2007), im Jahr 2008 mit Jungrinder geprüft. Die Ertragsermittlung erfolgt sowohl rechnerisch (Weideleistung nach FALKE/GEITH, modifiziert nach WEIßBACH 1993) als auch mit Weidekörben. Somit sind die bisherigen Ergebnisse von 1998 bis 2007 als beendet zu sehen.

Seit 2009 wird der Versuch durch das System der Kurzrasenweide ergänzt. Dadurch ergeben sich für die Folgejahre abweichende Weideflächengrößen für die Mähstandweide.

In den Jahren 2009 bis 2013 stellt die Modifizierung der Methoden zur Ermittlung der Weideleistung als Grundlage für eine praxisnahe Weideplanung den Schwerpunkt bei der Weiterführung dieses Versuches dar.

### 5. Versuchsergebnisse:

Da sich auf der Fläche, auf der bis 2008 die extensive Beweidung ohne N-Düngung stattfand, seit 2009 die reduzierte Mähstandweide befindet, gibt es bei den Weideerträgen noch keine Unterschiede. Die Weideerträge auf Basis der Weidekörbe sind auf der extensiven Weide sogar noch 18 % höher als auf der reduzierten Weide mit N-Düngung. Ein weiterer Grund dafür ist die günstigere Wasserversorgung der reduzierten Fläche im Vergleich zur konventionell genutzten Fläche, die eine steinige, zur schnellen Austrocknung neigende Kuppe besitzt. Die Beweidung erfolgte 2009 mit Jungrindern, 2010 bis 2013 mit Färsen (Schwarzbunt).

Bei einem pH-Wert von 5,6 bis 6,0 % ist der  $\underline{Boden}$  in beiden Systemen ausreichend mit Phosphor, Kalium und Magnesium versorgt.

Der <u>Pflanzenbestand</u> zwischen reduziertem und extensivem Weidesystem zeigt inzwischen unterschiedliche Tendenzen. Der Anteil an Deutschem Weidelgras auf der reduzierten Mähstandweide liegt deutlich unter dem Anteil auf der extensiven Mähstandweide. Der Anteil an Knaulgras und Löwenzahn ist auf der extensiven Weide gestiegen. Aufgrund der extremen Witterungsbedingungen und der geringen Versuchslaufzeit von 5 Jahren können diese Tendenzen nicht als gesichert angesehen werden. Der höhere Anteil an Weißklee auf der extensiv genutzten Fläche ist durch die geringere Stickstoffdüngung zu erklären.

Die Zunahmen der Rinder unterscheiden sich nur wenig.

Im April wird den Tieren nach dem Auftrieb Heu zugefüttert. Das führt dazu, dass die aufgenommene Energiekonzentration in dieser Zeit niedriger ist als die zur Verfügung stehende. Von Mai bis Juni sind die Grünlandbestände i.d.R. noch nicht von der Trockenheit betroffen und die Futterqualität ist hervorragend. Ab Juli ändert sich das Verhältnis von Futterangebot und Futterausnutzung, d.h. es kommt oft zur Futterknappheit und die Weidereste nehmen zu. Die Tiere halten sich bevorzugt in den niedrigwüchsigen Weidebereichen auf, die allerdings ab Juli aufgrund der immer häufiger auftretenden Trockenperioden eher strohähnlichen Zustand besitzen. Die Geilstellen, die bei der Messung des zur Verfügung stehenden Aufwuchses mittels der Weidekörbe mit einbezogen werden, werden von den Tieren verschmäht, besitzen aber offenbar eine höhere Energiekonzentration als die kurzen und vertrockneten Stoppel der von den Tieren bevorzugten Weidebereiche. Das führt dazu, dass der zur Verfügung stehende Aufwuchs ab Juli eine höhere Energiekonzentration besitzt als das Futter, das von den Tieren gefressen wird. In einigen Jahren musste bei Futtermangel auch schon Heu im Sommer zugefüttert werden, dass ebenfalls, wie im April, die aufgenommene Energiekonzentration beeinflusst.

Im Jahr 2013 haben wir den höchsten Tierbestand seit 2009 bei gleichbleibender Fläche. Im Mai und Juni gab es wenig Futterzuwachs aufgrund extremer Staunässe (Dauerregen). Im Juli war es sehr trocken und daher kaum Zuwachs. Im August und September reichte der inzwischen naturgemäß geringere Zuwachs nicht mehr für die bestehende Besatzdichte aus. Der Weideertrag und die Tiergewichte fallen daher sehr gering aus. Auf-

grund der Kälte und Nässe im Mai und Juni verloren die Tiere ca. 50 kg an Gewicht. Dies konnte aufgrund des Futtermangels im Spätsommer nicht mehr aufgeholt werden. Die Tiere wurden vorzeitig Anfang September abgetrieben.

## 6. Schlussfolgerungen/Handlungsbedarf:

Auf der Grundlage bisheriger Ergebnisse in Christgrün kann man sagen, dass unter der Voraussetzung, dass der Tierbesatz der Weidefläche und dem Weideertrag angepasst wird, bei extensiver Mähstandweide gleiche oder leicht höhere Gewichtszunahmen der Weidetiere wie bei reduzierter Mähstandweide erreicht werden können. Mit Mähstandweide können sowohl auf niedrigem als auch mittlerem Intensitätsniveau gute Ergebnisse erzielt werden.

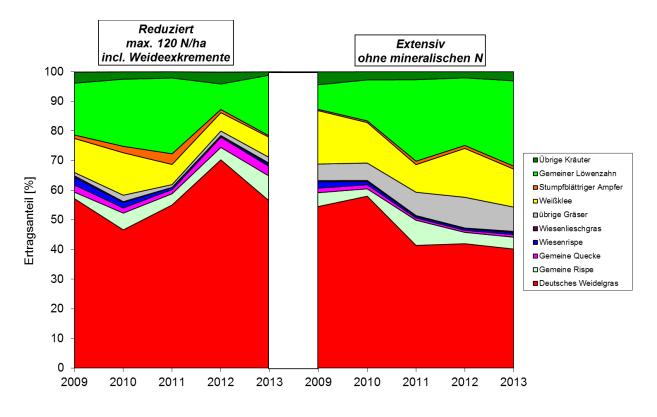
Beim Verzicht auf mineralischen Stickstoff gehen die flächenbezogenen Leistungen zurück, jedoch können weiterhin die gleichen Einzeltierleistungen erzielt werden, wenn das Weideverfahren fachgerecht durchgeführt wird. Eine ausreichende Kalk- und Grundnährstoffversorgung sowie intakte Pflanzenbestände sind für die beschriebenen Ergebnisse eine unverzichtbare Bedingung.

Durch häufige Trockenperioden gestaltete sich die Weideführung jedoch kompliziert. Die Schwankungen im Futterzuwachs und der Futterqualität müssen durch Anpassung des Tierbesatzes an das Futterangebot, Flächenzugabe bzw. Zufütterung so gering wie möglich gehalten werden. Wenn nicht genügend Fläche in den Trockenperioden zur Verfügung steht und der Tierbesatz nicht verringert werden kann, kommt es zur Futterknappheit. Trotz Zufütterung von Heu sind dann kurzfristig Gewichtsabnahmen nicht immer zu vermeiden, die aber im Laufe der Weideperiode wieder aufgeholt werden.

Da in Zukunft neue Weidesysteme geprüft werden sollen, wurde der Vergleich der Mähstandweideverfahren mit Rindern 2013 abgeschlossen.

Weitere Ergebnisse sind im Artikel "Besatz dem Aufwuchs anpassen" in der Bauernzeitung vom 11.5.2012 (19. Woche), Seite 44/45 nachzulesen.

| Versuchsdurchführung: LfULG | Themenverantw.: | Abt. 7 Landwirtschaft  | Versuchsjahr |
|-----------------------------|-----------------|------------------------|--------------|
| ArGr Feldversuche           | Referat:        | 72 Pflanzenbau         |              |
| Ref. 77, Frau Beatrix Trapp | Bearbeiter:     | Herr Dr. Gerhard Riehl | 2013         |


# Datenquelle: Weideverfahren

### Boden

|      | Weidesystem     |         |        |     | mg/100 gBoden |      |      | %     |      |
|------|-----------------|---------|--------|-----|---------------|------|------|-------|------|
|      | 100 = reduziert |         |        |     |               |      |      |       |      |
| Jahr | 200 = extensiv  | Datum   | Tiefe  | рΗ  | P_DL          | K_DL | Mg   | Humus | C/N  |
| 09   | 100             | Okt 09  | 0 - 10 | 5,9 | 12,0          | 26,7 | 18,9 | 6,2   | 9,9  |
| 10   |                 | Okt. 10 | 0 - 10 | 5,9 | 13,3          | 25,6 | 17,2 | 6,7   | 9,5  |
| 11   |                 | Okt. 11 | 0 - 10 | 6,0 | 13,1          | 28,2 | 16,4 | 6,6   | 9,8  |
| 12   |                 | Nov. 12 | 0 - 10 | 5,7 | 11,9          | 28,5 | 15,4 | 7,2   | 10,1 |
| 13   |                 | Okt. 13 | 0 - 10 | 5,6 | 11,2          | 24,9 | 17,2 | 6,9   | 9,4  |
| 09   | 200             | Okt 09  | 0 - 10 | 5,9 | 9,5           | 29,1 | 17,6 | 6,8   | 10,0 |
| 10   |                 | Okt 10  | 0 - 10 | 5,9 | 9,7           | 29,8 | 16,1 | 6,9   | 9,5  |
| 11   |                 | Okt. 11 | 0 - 10 | 6,0 | 10,3          | 32,2 | 15,5 | 7,8   | 9,9  |
| 12   |                 | Nov 12  | 0 - 10 | 5,7 | 9,7           | 33,5 | 14,7 | 7,8   | 9,7  |
| 13   |                 | Okt. 13 | 0 - 10 | 5,7 | 9,7           | 24,5 | 15,5 | 7,1   | 9,3  |

# zurück

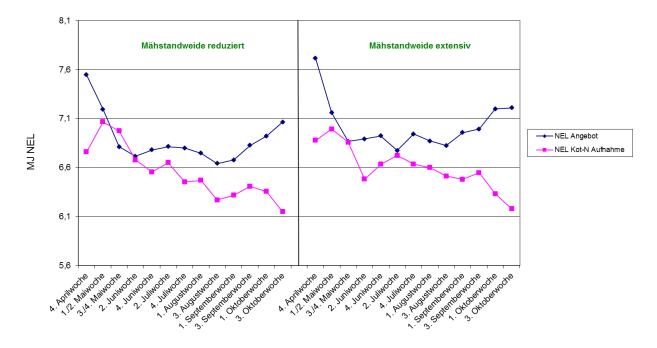
### Pflanzenbestand



zurück

## Weideleistung

| Mineral. N-Di | üngung (kg/ha*Jahr)           |
|---------------|-------------------------------|
| N (kg/ha*Jah  | r) durch Exkremente           |
| Weidefläche   | (ha)                          |
| Herdengröße   | e (Tierzahl)                  |
| Besatzstärk   | e (GV/ha)                     |
|               | rel.                          |
| Weidetage     |                               |
|               | Berechnet                     |
| Brutto-       | (dt TM/ha)                    |
| Weideertrag   |                               |
| Lebendgewi    | chtzunahmen                   |
|               | insges.(kg)                   |
|               | je Tier und Weidetag (g)      |
|               | rel.                          |
| je            | Tier in der Weideperiode (kg) |
|               | rel.                          |
|               | Zunahmen kg/ha Vollweide      |
|               | rel.                          |
| Weideleistur  |                               |
|               | edarf (MJ NEL)                |
| Zuwachs (M.   | ,                             |
| •             | inmasse (MJ NEL)              |
| Bru           | ttoweideleistung (MJ NEL/ha)  |
|               | rel.                          |
|               | Zufutter (MJ NEL/ha)          |
| Ne            | ttoweideleistung (MJ NEL/ha)  |
|               | rel.                          |


| konventionell |                             |        |        |           |        |  |  |
|---------------|-----------------------------|--------|--------|-----------|--------|--|--|
| JR            | Färsen Färsen Färsen Färsen |        |        | 2009-2013 |        |  |  |
| 2009          | 2010                        | 2011   | 2012   | 2013      | Mittel |  |  |
| 53            | 53                          | 46     | 78     | 40        | 54     |  |  |
| 39            | 47                          | 55     | 51     | 46        | 47     |  |  |
| 2,8           | 2,8                         | 2,8    | 2,8    | 2,8       | 2,8    |  |  |
| 11            | 6                           | 7      | 6      | 8         | 8      |  |  |
| 2,5           | 2,3                         | 2,8    | 2,3    | 2,9       | 2,6    |  |  |
|               |                             |        |        |           | 100    |  |  |
| 133           | 174                         | 143    | 190    | 129       | 154    |  |  |
|               |                             |        |        |           |        |  |  |
| 76            | 84                          | 70     | 106    | 94        | 86     |  |  |
|               |                             |        |        |           | 100    |  |  |
|               |                             |        |        |           |        |  |  |
| 1.163         | 752                         | 537    | 765    | 307       | 705    |  |  |
| 795           | 746                         | 536    | 671    | 297       | 609    |  |  |
|               |                             |        |        |           | 100    |  |  |
| 106           | 125                         | 77     | 128    | 38        | 95     |  |  |
|               |                             |        |        |           | 100    |  |  |
| 799           | 467                         | 308    | 545    | 234       | 470    |  |  |
|               |                             |        |        |           | 100    |  |  |
|               |                             |        |        |           |        |  |  |
| 33.250        | 40.691                      | 36.808 | 44.802 | 36.940    | 38.498 |  |  |
| 24.885        | 16.093                      | 11.492 | 16.371 | 6.569     | 15.082 |  |  |
| 66.599        | 51.266                      | 40.423 | 78.381 | 69.870    | 61.308 |  |  |
| 38.620        | 38.728                      | 31.800 | 50.019 | 40.638    | 39.961 |  |  |
|               |                             |        |        |           | 100    |  |  |
| 1.325         | 572                         | 670    | 624    | 624       | 763    |  |  |
| 37.295        | 38.156                      | 31.130 | 49.396 | 40.014    | 39.198 |  |  |
|               |                             |        |        |           | 100    |  |  |

| extensiv |        |                      |        |           |              |  |  |
|----------|--------|----------------------|--------|-----------|--------------|--|--|
| JR       | Färsen | Färsen Färsen Färsen |        | 2009-2013 |              |  |  |
| 2009     | 2010   | 2011 2012            |        | 2013      | Mittel       |  |  |
| 0        | 0      | 0                    | 0 0    |           | 0            |  |  |
| 44       | 52     | 56                   | 64     | 51        | 53           |  |  |
| 2,6      | 2,6    | 2,6                  | 2,6    | 2,6       | 2,6          |  |  |
| 11       | 6      | 6                    | 6      | 8         | 7            |  |  |
| 2,8      | 2,6    | 2,4                  | 2,4    | 3,1       | 2,7          |  |  |
|          |        |                      |        |           | 104          |  |  |
| 133      | 174    | 143                  | 190    | 129       | 154          |  |  |
|          |        |                      |        |           |              |  |  |
| 88       | 85     | 69                   | 99     | 83        | 85           |  |  |
|          |        |                      |        |           | 98           |  |  |
|          |        |                      |        |           |              |  |  |
| 1005     | 813    | 541                  | 884    | 314       | 711          |  |  |
| 687      | 836    | 601                  | 775    | 305       | 641          |  |  |
|          |        |                      |        |           | 105          |  |  |
| 91       | 135    | 86                   | 147    | 39        | 100          |  |  |
|          |        |                      |        |           | 105          |  |  |
| 760      | 502    | 351                  | 625    | 213       | 490          |  |  |
|          |        |                      |        |           | 104          |  |  |
|          |        |                      |        |           |              |  |  |
| 34.460   | 41.259 | 31.918               | 42.066 | 36.906    | 37.322       |  |  |
| 21.509   | 17.392 | 11.577               | 18.918 | 6.726     | 15.224       |  |  |
| 69.908   | 41.555 | 38.170               | 62.650 | 48.861    | 52.229       |  |  |
| 42.132   | 39.143 | 31.900               | 48.294 | 36.130    | 39.520       |  |  |
|          |        |                      | 99     |           |              |  |  |
| 1.614    | 736    | 670                  | 624    | 624       | 854          |  |  |
| 40.518   | 38.407 | 31.230               | 47.671 | 35.506    | 38.666<br>99 |  |  |
|          |        |                      |        |           |              |  |  |

# zurück

## Energiekonzentration

Vergleich der vom Tier aufgenommenen Energiekonzentration (Kot-N) mit der Energiekonzentration des zur Verfügung stehenden Aufwuchses im Mittel der Jahre 2009 bis 2013

