Stand der Verbrennung für alternative Brennstoffe aus der Landwirtschaft

Gliederung

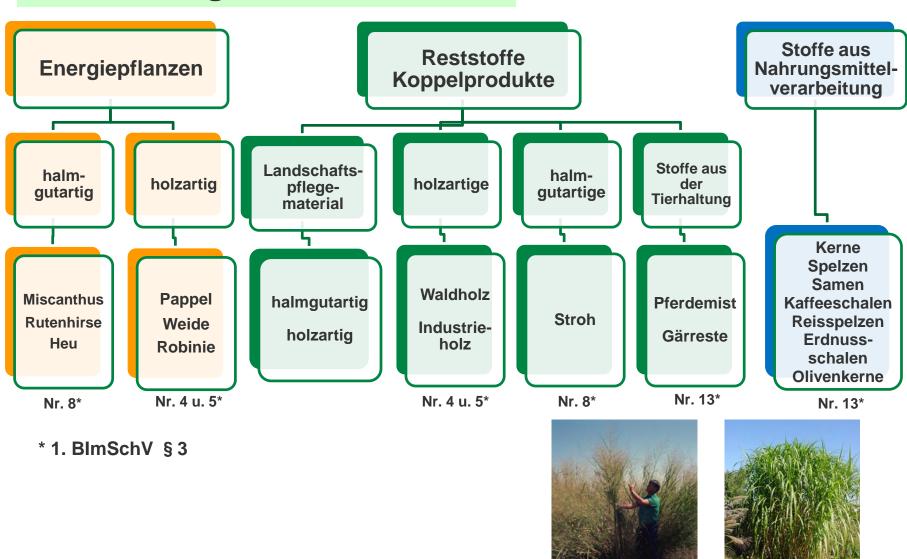
1. Alternative Brennstoffe und deren rechtliche Rahmenbedingungen

2. Anwendungsbeispiele

2.1. Untersuchungen der Emissionscharakteristik und Stoffbilanzen bei der thermischen Verwertung von Kurzumtriebshölzern im LVG Köllitsch

2.2. Untersuchungen zur thermischen Nutzung von Biomassen aus der

Landschaftspflege (Grünland)


Fazit

Feste Brennstoffe aus Landund Nahrungsmittelindustrie

LANDESAMT FÜR UMWELT, LANDWIRTSCHAFT UND GEOLOGIE

Anforderungen an die Energiebereitstellung

- •hohe Versorgungssicherheit
- wirtschaftliche Bereitstellung
- hohe Energiedichte
- technisch erprobte Verfahren
- •Einhaltung von umweltrechtlichen Vorschriften, insbesondere Emissionen (Nachhaltigkeit)
 - Stückgut
 - Hackgut
 - Häckselgut
 - Pellets
 - Briketts
 - Ballen

	Heizwert in MJ/kg
Holzpellets	16
Fichtenholz	18,8
Strohballen	15
Reisspelzen	16,4
Gärrest	17,5

Grenzwerte der 1. BlmSchV

Stufe	Brennstoff nach § 3 Abs. 1	Nennwärme- leistung [kW]	Staub [mg/m³]	CO [mg/m³]
1 (gültig seit	Nr. 4, 5 (naturbelassenes Holz- z. B. Hackschnitzel)	≥ 4 ≤ 500	100	1000
In-Kraft-Treten)		> 500	100	500
	Nr. 5a (Holzpellets)	≥ 4 ≤ 500	60	800
		> 500	60	500
	Nr. 8, 13 (Stroh, strohähnliche, Sonderbrennstoffe)	≥ 4 < 100	100	1000
2 (gültig ab 2015)	Nr. 1 - 5a (u. a.: naturbelassenes Holz z. B. Hackschnitzel, Holzpellets)	≥ 4	20	400
	Nr. 8, 13 (Stroh, strohähnliche, Sonderbrennstoffe)	≥ 4 < 100	20	400

Zusammenfassung der Nachweise an Hand eines Beispiels

LANDWIRTSCHAFT **UND GEOLOGIE**

LANDESAMT FÜR UMWELT,

(Heizkessel 49 kW)

Brennstoff	Stroh 1. BlmSchV § 3 Nr. 8	sonstige Biomasse 1. BlmSchV § 3 Nr. 13
Typprüfung incl. PCDD/F	X	X
1 jähriges Messprogramm PAK / PCDD/F		X
1 jähriges Messprogramm CO / Gesamtstaub		X
erstmalige und wieder kehrende Überprüfung durch den Schornsteinfeger	X	X
Es müssen genormte Qualitätsanforderungen für den Brennstoff vorliegen.		X

Gliederung

1. Alternative Brennstoffe und deren rechtliche Rahmenbedingungen

2. Anwendungsbeispiele

2.1. Untersuchungen der Emissionscharakteristik und Stoffbilanzen bei der thermischen Verwertung von Kurzumtriebshölzern im LVG Köllitsch

2.2. Untersuchungen zur thermischen Nutzung von Biomassen aus der

Landschaftspflege (Grünland)

3. Fazit

Eingesetzte Brennstoffe

2 Arten Kurzumtriebshölzer (Pappel und Weide)

- von schwermetallbelasteten Flächen
- Holzernte erfolgte im Frühjahr 2010
- auf einen Wassergehalt < 15 M.-% vorgetrocknet
- schmalere Hackschnitzel und faserige Anteile sowie kleine Äste (Weide) enthalten
- sehr gute Qualität, sehr homogen, wenig Fremdstoffe

unbelasteter Vergleichsbrennstoff

- Holzhackschnitzel der Fa. SAXHOLZ® GmbH aus naturbelassenem Rundholz
- entsprach der ÖNORM M 7133 in einer Größe von G30-G50 (größte Kantenlänge ca. 50 mm)
- eher ungleichmäßig große Hackschnitzel, kleine Kiefernäste, teilweise mit Nadeln und Holzspänen
- hohe Feuchte von 29,2 Ma.-%

Brennstoff Weide

Brennstoff Pappel

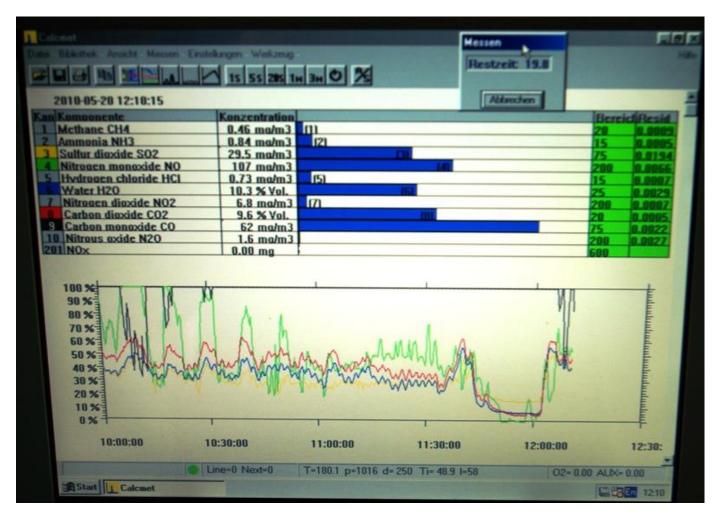
Quelle: ILK 2010

Eingesetzte Kesseltechnik

Biomassekessel MAWERA, Lehr- und Versuchsgut Köllitsch

Untersuchungsparameter

Folgende gasförmige und staubförmige Rauchgasinhaltsstoffe wurden gemessen:


- kontinuierliche Messung der gasförmigen Emissionen an CO, SO₂, NO_x, HCl, CO₂, Gesamt-Kohlenstoff (Ges.-C)
- diskontinuierliche Messungen des Gesamtstaubgehaltes im Abgas mit mehreren Einzelprobenahmen je Versuch und Lastzustand des Heizkessels

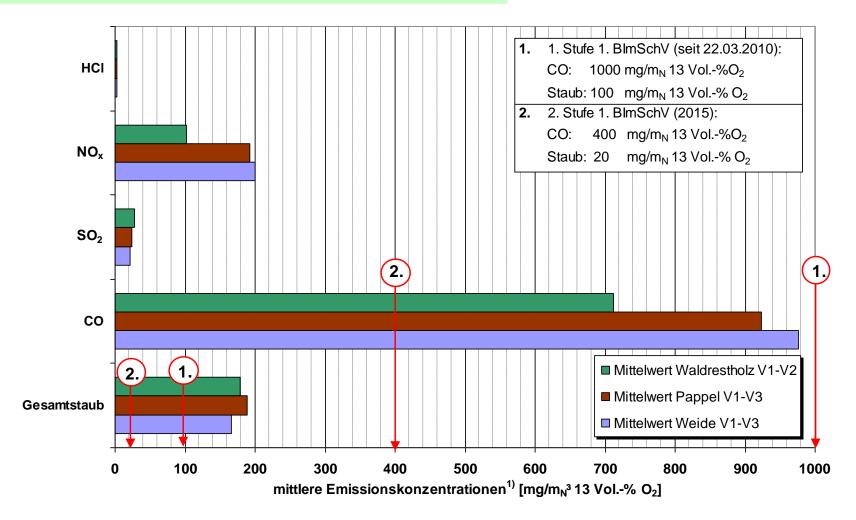
Um die bei den Messungen vorherrschenden Randbedingungen beurteilen zu können, erfolgte weiterhin die zusätzliche Messung von:

- Abgasgeschwindigkeit (zur Ermittlung des Abgasvolumenstroms) und
- Abgastemperatur, Druck und Feuchte.

Emissionskonzentrationen

Verlauf der Emissionskonzentrationen bei der Weide

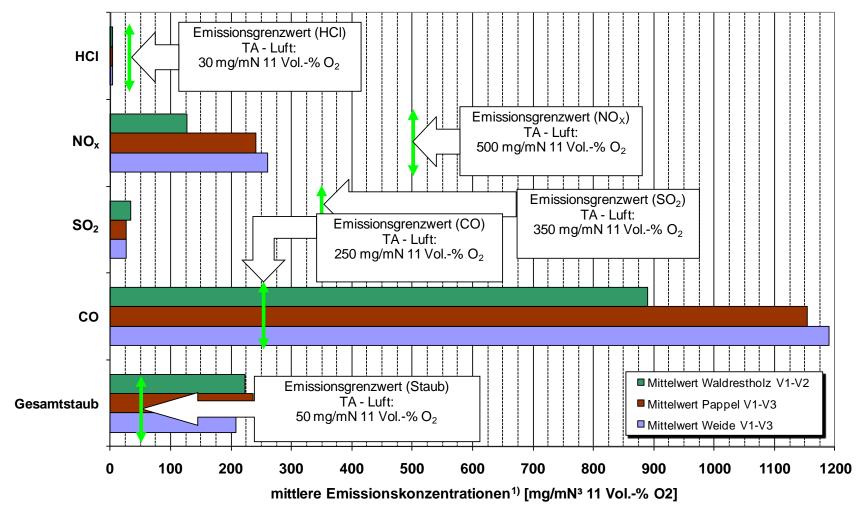
Emissionen



Nennleistung Heizkessel: 280 kW		Konzentration des jeweiligen Abgasbestandteiles, Durchschnittswerte aller ¼ - Stunden Mittel des Beurteilungszeitraums [mg/m _N ³ tr. Abg. 13 Vol% O ₂]			\mathcal{O}_2]		
Versuchs- brennstoff	Kesselleistung im Versuch [kW]	O ₂ [Vol%]	Gesamtstaub (Durchschnitt aller Messungen)	СО	SO ₂	NO _x	HCl
Mittelwert Weide	116	10,8	167	976	20,9	200	2,7
Mittelwert Pappel	110	11,7	189	923	24,3	193	2,7
Mittelwert Waldresth.	90	12	179	712	27,5	102	3,0

12 | 24.09.2013| Dr. Kerstin Jäkel

Messergebnisse gasförmige Komponenten, Gesamtstaub; Bezug: 1. BlmSchV



¹⁾Dargestellt sind die Durchschnittswerte aller 1/4 h Mittelwerte eines Brennstoffes über alle Messkampangen

Messergebnisse gasförmige Komponenten, Gesamtstaub; Bezug: TA-Luft

Quelle: ILK 2010

¹⁾Dargestellt sind die Durchschnittswerte aller 1/4 h Mittelwerte eines Brennstoffes über alle Messkampangen

14 | 24.09.2013 | Dr. Kerstin Jäkel

Ergebnisse

→ Überschreitung der Mittelwerte aller Messungen der Emissionsbegrenzungen für Gesamtstaub um ca. 10 – 20 %

Anlagengröße: 280 kW, befeuert mit naturbelassenen Hölzern in Form von Hackschnitzeln				
Versuchs- brennstoff	Gesamtstaub (Grenzwert 1. BImSchV 1997): 150 [mg/m _N ³ i.N.tr. 13Vol% O ₂]	CO (Kesselleistung >150-500kW)) (Grenzwert 1. BImSchV 1997): 1000 [mg/m _N ³ i.N.tr. 13Vol% O ₂]		
Weide	167	976		
Pappel	189	923		
Waldrestholz	179	712		
	Grenzwert 1. BImSchV 2010, 1. Stufe: 100 [mg/m _N ³ i.N.tr. 13Vol% O ₂]	Grenzwert 1. BImSchV 2010, 1. Stufe: 1000 [mg/m _N ³ i.N.tr. 13Vol% O ₂]		
	Grenzwert 1. BImSchV 2010, 2. Stufe: 20 [mg/m _N ³ i.N.tr. 13Vol% O ₂]	Grenzwert 1. BImSchV 2010, 2. Stufe: 400 [mg/m _N ³ i.N.tr. 13Vol% O ₂]		

15 | 24.09.2013 | Dr. Kerstin Jäkel

Ergebnisse

- Die Emissionsgrenzwerte für CO wurden von allen Brennstoffen unterschritten.
- Bei den Mittelwerten aller Messungen wurden die Emissionsbegrenzungen für Gesamtstaub um 10-20% überschritten.
- Waldrestholz hatte leichte Vorteile bei der Verbrennungsqualität.
- Über die Optimierung der Kesselparametrierung unter Einbeziehung des Systems Kessel-Brennstoff können die Emissionen weiter deutlich gesenkt werden.
- Zur Begrenzung des Gesamtstaubgehaltes werden zusätzlich filternde oder elektrostatische Abscheider empfohlen.
- Alle Brennstoffe erzielten Kesselwirkungsgrade im Bereich von 75-85%.
- Weitere Emissionsbegrenzungen der TA-Luft (NO_x, HCl, SO₂) wurden unterschritten.
- schwermetallbelastete Hölzer (bes. Cd) Empfehlung: Staubabscheidetechnik

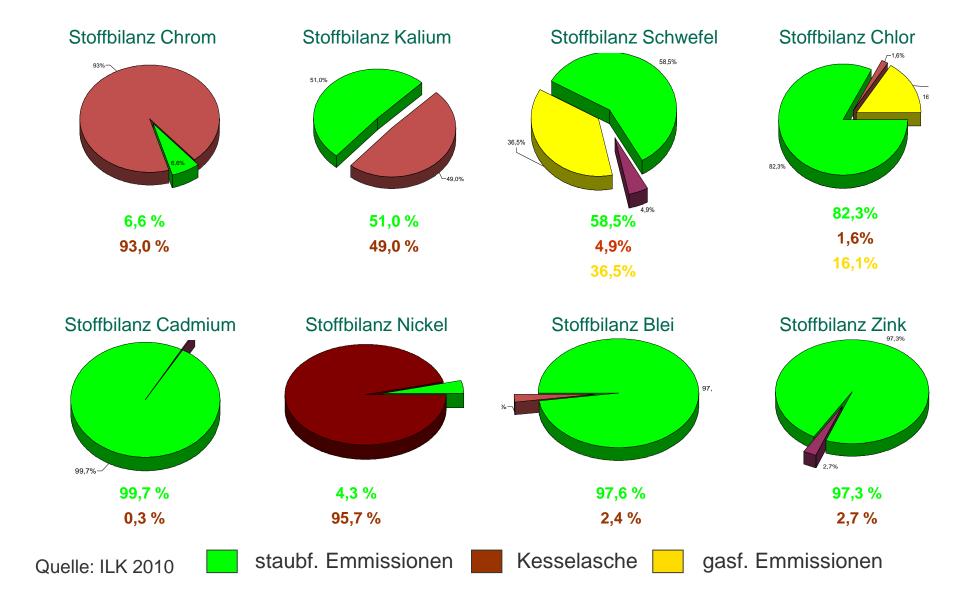
Strategie Stoffbilanz

Eintrag (Input) und Austrag (Output) jedes untersuchten Einzelstoffs im Brennstoff werden verglichen.

Input:

Eintrag des Stoffes über den Brennstoff (Bezug: chemische Analyse der Brennstoffe durch das LfULG für Weide, Pappel und Waldrestholz)

Output:


Austrag als staubförmige Emissionen Austrag als gasförmige Emissionen (nur bilanzierungsfähig für die Stoffe Schwefel als SO₂ und Chlor als HCl) Austrag als Asche (Rostasche)

Der Verbrennungskessel wurde vor dem ersten Versuchsbeginn, sowie nachfolgend jeweils nach Versuchsende komplett gereinigt und die gesammelten Staubmengen bilanziert.

Stoffbilanzen - Weide

Gliederung

1. Alternative Brennstoffe und deren rechtliche Rahmenbedingungen

2. Anwendungsbeispiele

2.1. Untersuchungen der Emissionscharakteristik und Stoffbilanzen bei der thermischen Verwertung von Kurzumtriebshölzern im LVG Köllitsch

2.2. Untersuchungen zur thermischen Nutzung von Biomassen aus der

Landschaftspflege (Grünland)

Fazit

Eingesetzter Brennstoff

Grüngutpellets

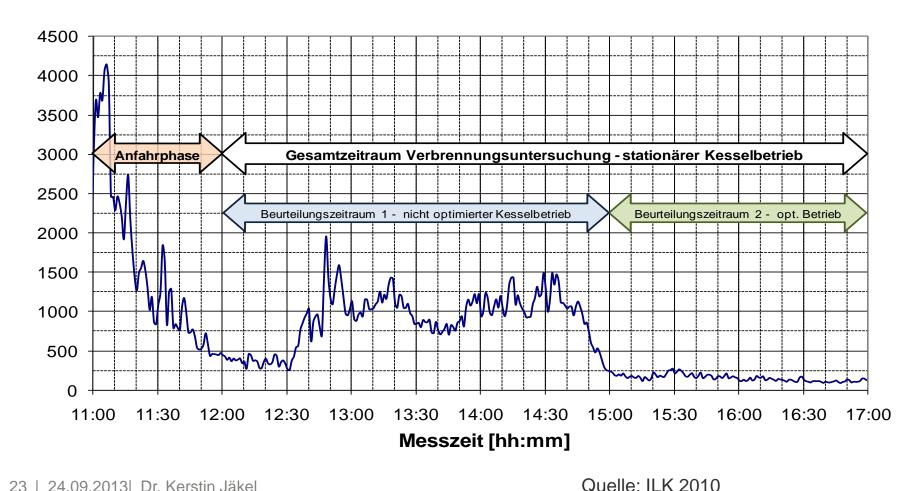
- feste, formstabile Struktur
- keine Neigung zu Staubentwicklung oder Brückenbildung
- in 20 kg Plastikgewebesäcken keine Feuchtenester oder Schimmelbildung
- gegenüber Hölzern höhere Gehalte an Asche, Cl, K, und N → dadurch mehr Luftschadstoffe, Korrosion und Verschlackung
- niedrigere Erweichungstemperatur gegenüber Holz (Schlackebildung)
- gute Dosier- und Pelletiereigenschaften

Eingesetzte Kesseltechnik

Biomasse-/Kesselprüfstand ILK Dresden

Untersuchungsparameter

Folgende gasförmige und staubförmige Rauchgasinhaltsstoffe wurden gemessen:


• kontinuierliche Messung der gasförmigen Emissionen an O₂, CO, SO₂, NO_x, HCl, CO₂, H₂O, Gesamt-Kohlenstoff (Ges.-C)

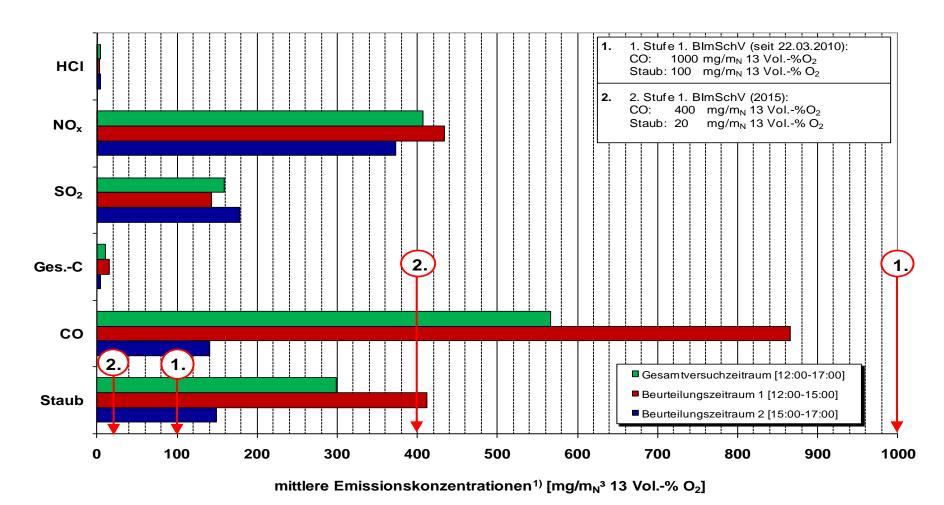
 diskontinuierliche Messungen des Gesamtstaubgehaltes im Abgas (VDI 2066)

Kesselwirkungsgrad

Verlauf der **Emissionskonzentration CO** im Versuchszeitraum

CO - Konzentration [mg/m_N³ i.tr.Abg.]

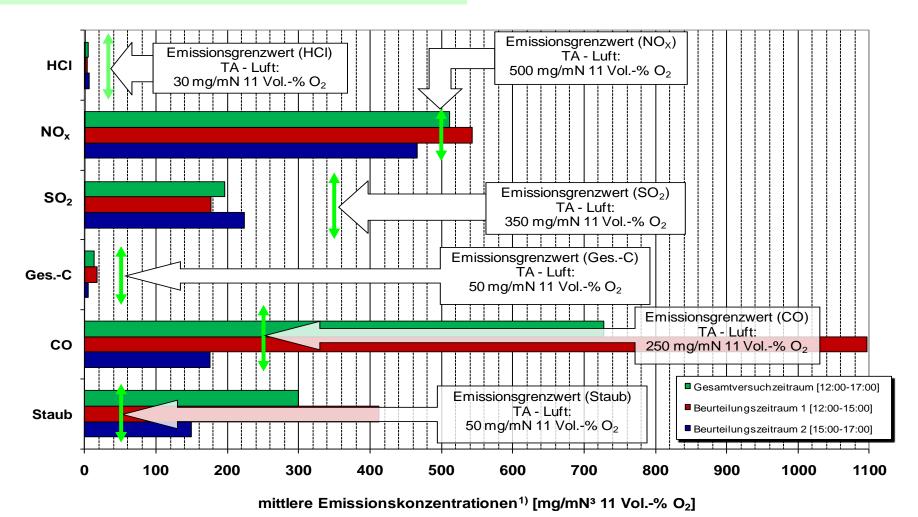
Durchschnitt der Viertel- bzw. Halbstundenmittelwerte des jeweiligen Beurteilungszeitraums



Emissionsparameter	Beurteilung 1 nicht optimierter Betrieb		Beurteilung 2 optimierter Betrieb		
	13 Vol% O ₂ (1. BImSchV)	11 Vol% O ₂ (TA-Luft)	13 Vol% O ₂ (1. BImSchV)	11 Vol% O ₂ (TA-Luft)	
$CO [mg/m_N^3]$	866	1097	140	175	
$NO_X [mg/m_N^3]$	434	543	373	466	
$SO_2 [mg/m_N^3]$	143	177	178	223	
HCl [mg/m _N ³]	3,3	4,0	4,7	5,8	
GesC [mg/m _N ³]	14,8	17,5	4,1	5,1	
Gesamtstaub [mg/m _N ³] (nur ¼-h Mittel)	412	515	149	187	

24 | 24.09.2013| Dr. Kerstin Jäkel

Messergebnisse gasförmige Komponenten, Gesamtstaub; Bezug: 1. BlmSchV



¹⁾Dargestellt ist der Durchschnitt aller 1/4 h Mittelwerte im jeweiligen Beurteilungszeitraum

Messergebnisse gasförmige Komponenten, Gesamtstaub; Bezug: 1. TA-Luft

Quelle: ILK 2010

¹⁾Dargestellt ist der Durchschnitt aller 1/2 h Mittelwerte im jeweiligen Beurteilungszeitraum

Ergebnisse

- die Staub- und CO-Gehalte sowie der Parameter Ges.-C liegen optimierten Betrieb deutlich niedriger
- hinsichtlich der Grenzwerte It. 1. BlmSchV wurde der Parameter Gesamtstaub überschritten (hoher Aschegehalt)
- spezifische Anpassungen des Verbrennungsprozesses an den Brennstoff bringen weitere Vorteile, Grenzwert von 20 mg/m_N³ ist nur einzuhalten bei sekundären Maßnahmen in Form eines wirksamen Staubabscheiders im Abgasstrom
- die Anforderungen der TA-Luft sowie der 1. BlmSchV (1. + 2. Stufe) konnten hinsichtlich des Parameters CO erfüllt werden
- die TA-Luft wurde auch erfüllt für Ges.-C, SO₂, HCl, NO₂
- gute Verbrennungsqualität bei sehr gleichmäßigem Abbrand
- erreichte Kesselwirkungsgrade von 73 86,4 % mittleres bis gutes Niveau
- Bildung größerer, kompakter Schlacke- bzw. Sinterklumpen (hohen Ascheund Chlorgehalte), während des Versuchszeitraumes aber keine Beeinträchtigungen der Kesseltechnik

Gliederung

1. Alternative Brennstoffe und deren rechtliche Rahmenbedingungen

2. Anwendungsbeispiele

2.1. Untersuchungen der Emissionscharakteristik und Stoffbilanzen bei der thermischen Verwertung von Kurzumtriebshölzern im LVG Köllitsch

2.2. Untersuchungen zur thermischen Nutzung von Biomassen aus der

Landschaftspflege (Grünland)

3. Fazit

Fazit

- Es stehen eine Reihe von verbrennungswürdigen Materialien zur Verfügung.
- Neue Zulassungen von Kesseln, die unter die 1. BlmSchV fallen, sind so gut wie ausgeschlossen.
- Alle getesteten Brennstoffe führten zu einer guten Verbrennungsqualität.
- Die Kesselwirkungsgrade wurden durch die getesteten Brennstoffe nicht reduziert.
- Es bestanden emissionstechnische Vorteile des holzartigen gegenüber dem halmgutartigen Brennstoff.
- Der Einsatz von Staubabscheidern ist empfehlenswert oder erforderlich.
- Die Optimierung des Kessel-Brennstoff-Systems führt zu deutlich reduzierten Emissionen.

