

Wasserentzug und Wassernutzungseffizienz landwirtschaftlicher Kulturen im Energiepflanzenanbau

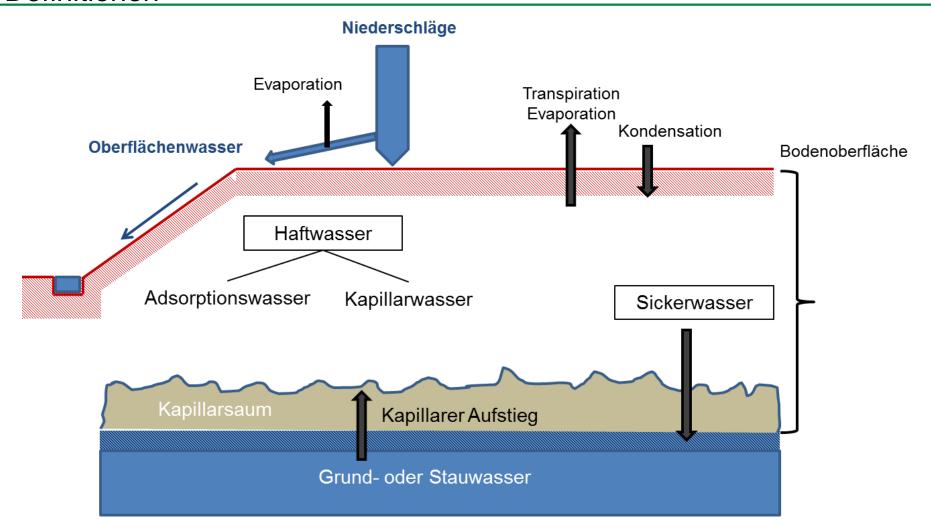
Dr. Kerstin Jäkel, Markus Theiß, Falk Böttcher und Martin Schmidt

14. Leipziger Tag der Agrarmeteorologie am 10. Januar 2018

Gliederung

(1) Einführung

- Theoretische Grundlagen
- Vorstellung des Standorts und methodische Hinweise
- (2) Vergleich Zweitfruchtanbau mit Brache-Mais
- (3) Vergleich von Sorghumarten mit Mais
- (4) Vergleich mehrjähriger Energiepflanzen
- (5) Zusammenfassung



Einführung

Bodenphysikalische Kennwerte -Definitionen

Einführung

Bodenphysikalische Kennwerte - Definitionen

Bodenart	Feldkapazität FK Vol %	Welkepunkt, Totwasseranteil Vol %	nutzbare Feldkapazität nFK Vol %
Sand	10,5	2,5	8
anlehmiger Sand	19	6	13
Lehm	40	23	17
Ton	48	34	14
Schluff	35	11	24

Einführung

LANDESAMT FÜR UMWELT, LANDWIRTSCHAFT TN/ UND GEOLOGIE

Transpirationskoeffizient in kg H₂O / kg TM

Kultur/Quelle	Chmielewski, Geisler 1988, Boku Wien, USA alt	TLL 2005	TLL 2008-10	TLL 2011-13
Sorghum	200-300		140-180	160-250
Mais, ZR	250-400	191/176-320	150-190	
Getreide	220-500	330-370		
Kartoffeln	300-600			
Raps	600-700	296		
Luzerne, Soja	> 700			
Wel. Weidelgras		360		

Versuchsstandort Trossin

Boden und Klima

Boden

- Fahlerdebodengesellschaft des südlichen Moränengebietes
- Bodentyp: Bänderparabraunerde
- Ackerzahl: 28 bis 45

Klima

Mitteldeutsches Trockengebiet

Lj. Mittel (Klitzschen 1981 – 2010)

Temperatur 9,5 °C

Niederschlag 586 mm

Boden-Klima-Raum (nach Roßberg et al 2007)

 trocken-warme diluviale Böden des ostdeutschen Tieflandes

Versuchsstandort Trossin Bodenphysikalische Kennwerte*

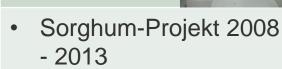
* Erhebung durch ZALF nach KA5

Tiefe	Bodenart	Sand	Schluff	Ton	FK	PWP	nFK	TRD
cm			%			mm		g/cm³
0 - 30	Su3	65	28	7	33	10	23	1,65
30 - 60	Su3	66	30	5	24	6	18	1,76
60 - 90	Su2/Ss	76/92	20/6	3/2	19	7	12	1,71

In 0 - 60 cm: ca. 69 (23x3) + 54 (18x3) = ca. 123 mm Wasser

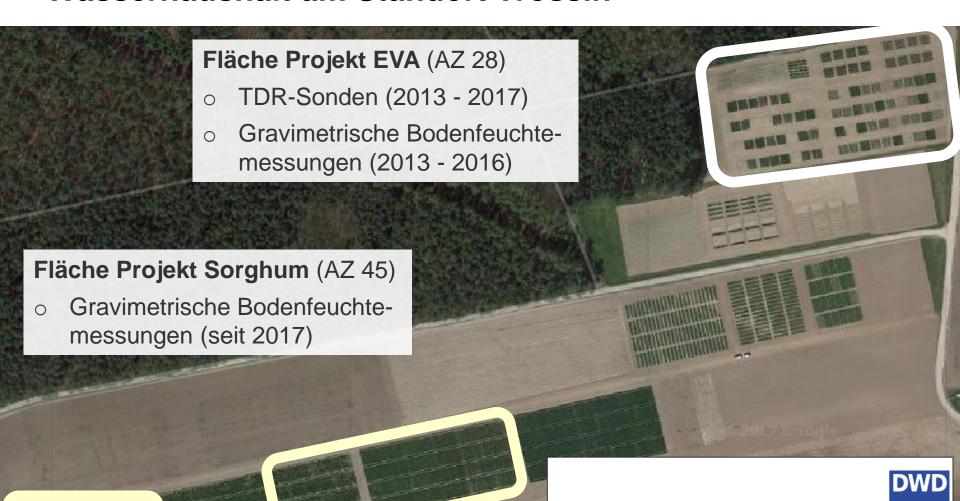
Messmethoden der Bodenfeuchtebestimmung

Gravimetrische
Bestimmung
(0 – 60 cm)
Bohrstock


TDR-Sonden (feste Messstellen in 15 und 45 cm Tiefe) **Lysimeter** (TLL Thüringen)

- Zweitfruchtanbau/EVA
 -Projekt 2013 2016
- Vergleich Sorghum-Mais/EVA 2013 – 2016 und Sorghum 2017
- mehrjährige Pfl./EVA 2013 - 2017

mehrjährige Pfl./EVA 2013 - 2017


Begleituntersuchungen zum LAN Wasserhaushalt am Standort Trossin

LANDESAMT FÜR UMWELT, LANDWIRTSCHAFT UND GEOLOGIE

Deutscher Wetterdienst

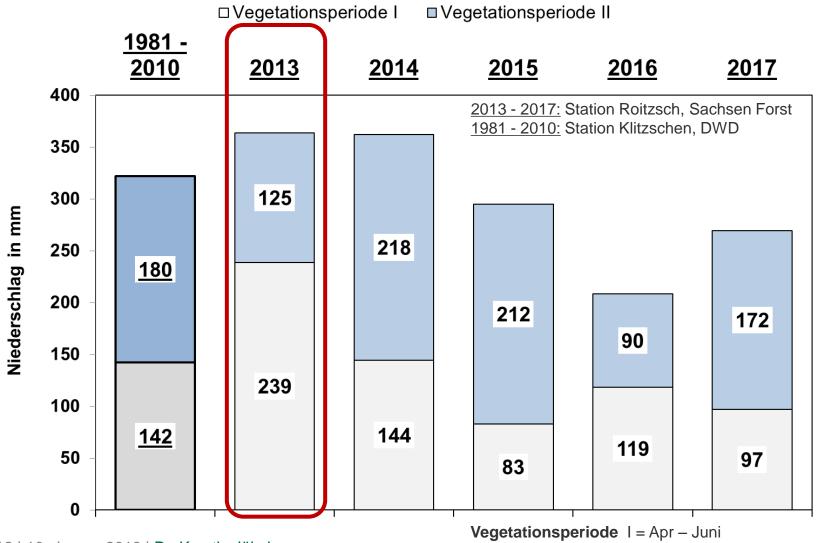
Wetter und Klima aus einer Hand

Gliederung

- (1) Einführung
 - Theoretische Grundlagen
 - Vorstellung des Standorts und methodische Hinweise
- (2) Vergleich Zweitfruchtanbau mit Brache-Mais
- (3) Vergleich von Sorghumarten mit Mais
- (4) Vergleich mehrjähriger Energiepflanzen
- (5) Zusammenfassung

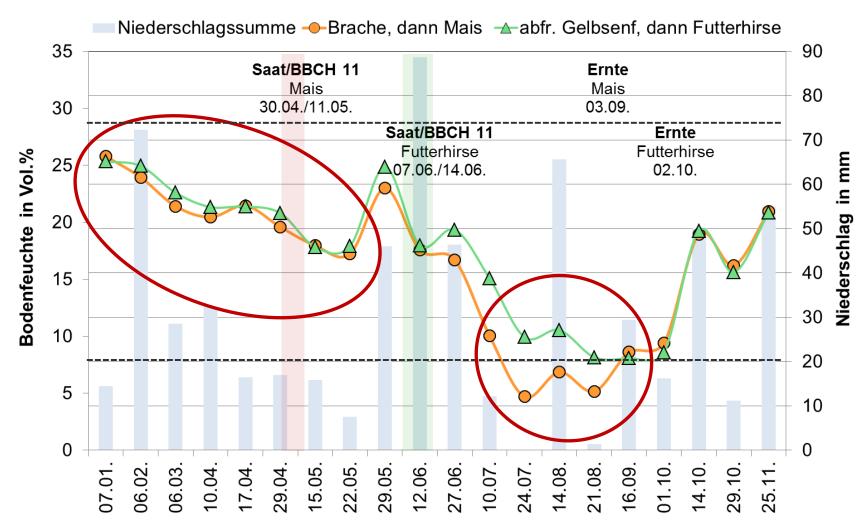
Beprobte Fruchtarten und Anbausysteme (2013 bis 2017)

Bodenfeuchte Vol. %	2013	2014	2015	2016
Zweitfruchtanbau im Vergleich zu Brache-N				
(1) Brache – Mais (HF)	x	x	x	x
(2) Gelbsenf (abfr. ZwF) - Futterhirse	x			
(3) Grünroggen (ZwF) - Mais		x	x	
(4) Grünroggen (ZwF) - Sudangrashybride		x	x	x
(5) Wickroggen (ZwF) - Mais		x		
(6) Luzernegras (ZwF) - Mais			x	


^{*} Gravimetrische Messungen

Niederschlagsverteilung in den Versuchsjahren 2013 - 2017

II = Juli - Sep



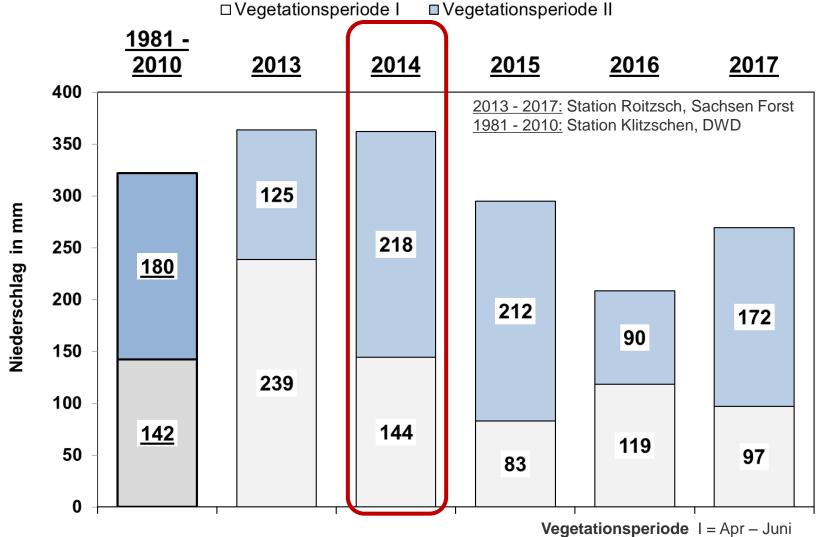
HF-Mais vs. HF Futterhirse

LANDESAMT FÜR UMWELT, LANDWIRTSCHAFT UND GEOLOGIE

Bodenfeuchte in Vol. % (0 - 60 cm), 2013

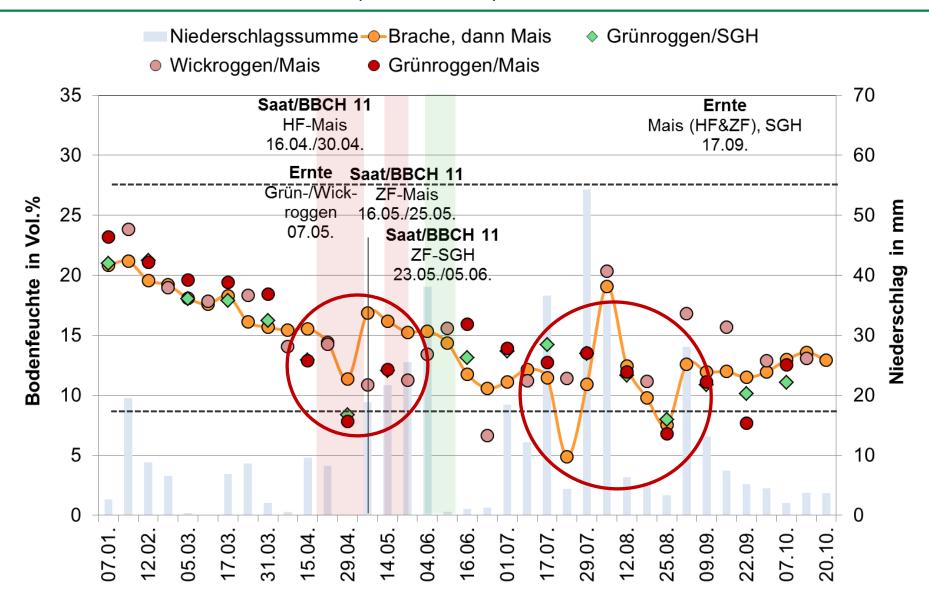
Erträge – Zweikulturnutzung Anbaujahr 2013

Kultur	Ertrag dt TM/ha			
	absolut	relativ		
(1) Mais, nach Brache	108	100		
(2) Futterhirse, nach abfr. ZF	126	117		


Futterhirse, Ende September

Niederschlagsverteilung in den Versuchsjahren 2013 - 2017

II = Juli - Sep



HF-Mais vs. ZF-Mais vs. ZF-SGH

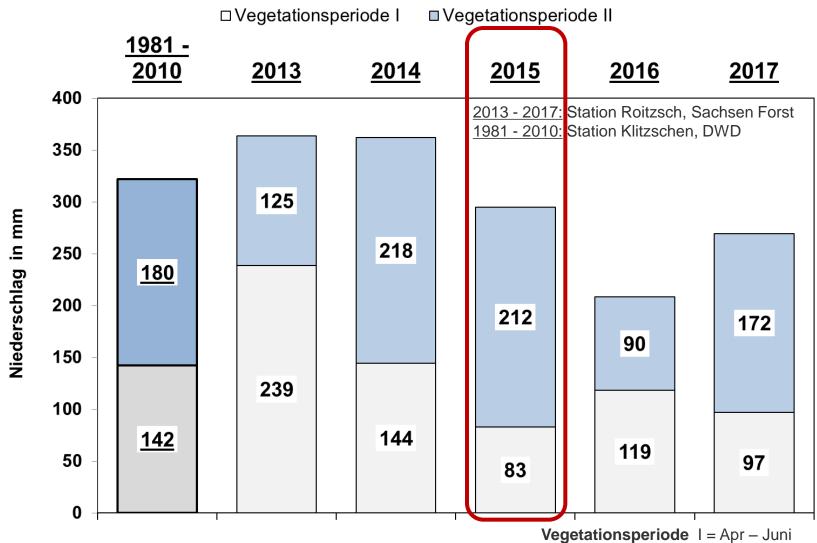
LANDESAMT FÜR UMWELT, LANDWIRTSCHAFT UND GEOLOGIE

Bodenfeuchte in Vol. % (0 - 60 cm), 2014

Erträge – Zweikulturnutzung Anbaujahr 2014

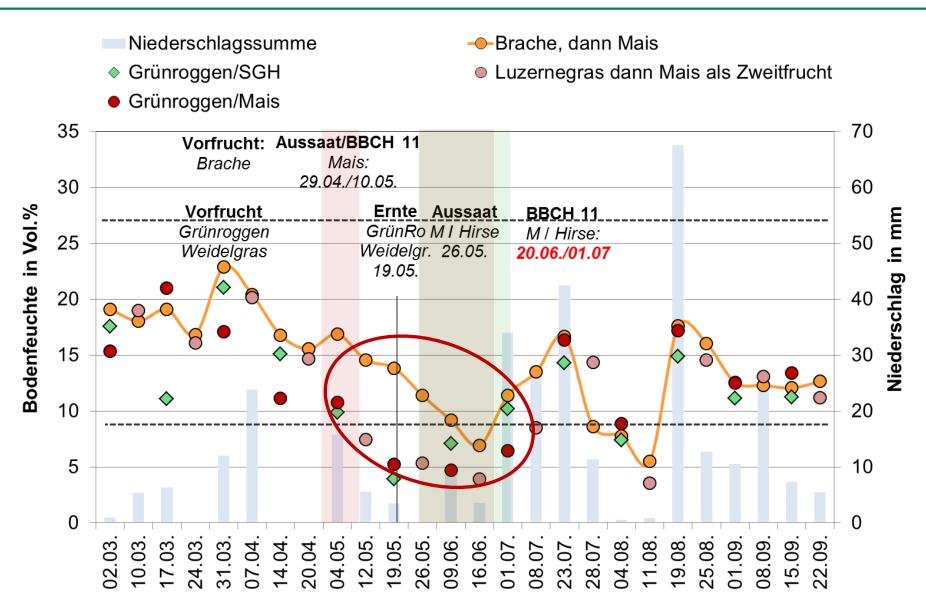
Kultur	Ertrag dt TM/ha		
	absolut	relativ	
(1) Mais, nach Brache	194	100	
(3) Mais nach Grünroggen	249 + 53 = 302	156	
(5) Mais nach Wickroggen (WzF)	243 + 52 = 295	152	
(4) Sudangrashybride nach Grünroggen	168 + 55 = 223	115	

Wickroggenernte



Niederschlagsverteilung in den Versuchsjahren 2013 - 2017

II = Juli - Sep



HF-Mais vs. ZF-Mais vs. ZF-SGH

LANDESAMT FÜR UMWELT, LANDWIRTSCHAFT UND GEOLOGIE

Bodenfeuchte in Vol. % (0 - 60 cm), 2015

HF-Mais vs. ZF-Mais Foto vom 17.06.2015

Mais nach Brache Aussaat am 29.04.

49 Tage nach Saat

Mais nach Grünroggen Aussaat am 26.05.

22 Tage nach Saat

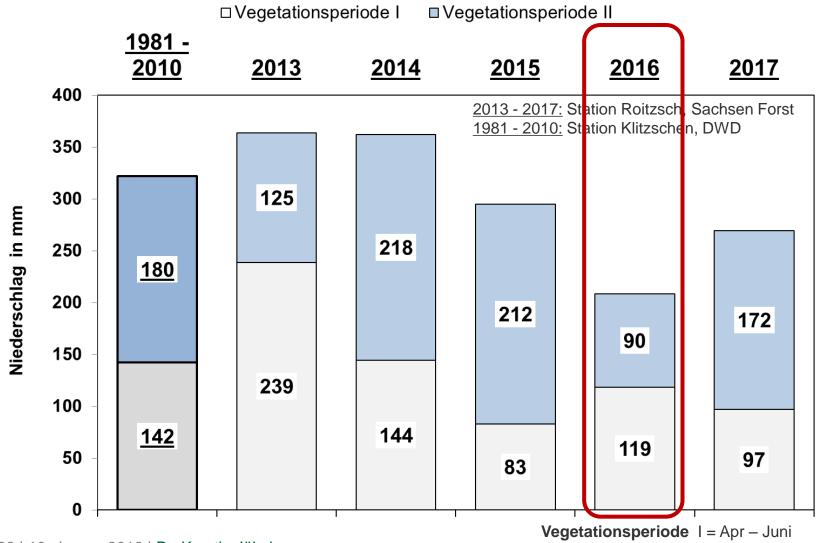
Erträge – Zweikulturnutzung Anbaujahr 2015

Kultur	Ertrag dt TM/ha		
	absolut	relativ	
(1) Mais, nach Brache	99	100	
(3) Mais nach Grünroggen	71 + 54 = 125	126	
(6) Mais nach Luzernegras	+ 66*	-	
(4) Sudangrashybride nach Grünroggen	92 + 74 = 166	168	

^{*} Mais vertrocknet

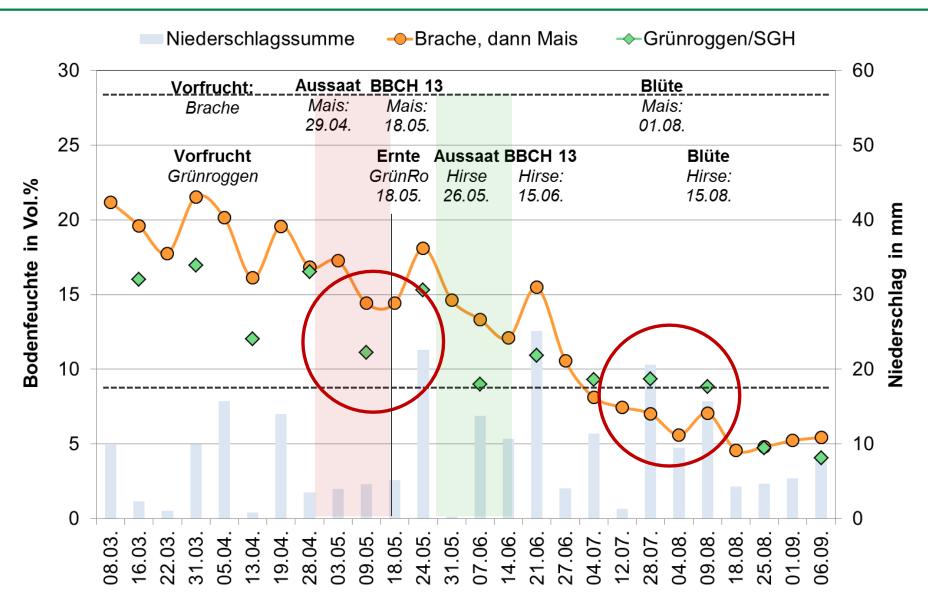
Mais nach Weidelgras

Mais nach Grünroggen



Niederschlagsverteilung in den Versuchsjahren 2013 - 2017

II = Juli - Sep



HF-Mais vs. Grünroggen/SGH

LANDESAMT FÜR UMWELT, LANDWIRTSCHAFT UND GEOLOGIE

Bodenfeuchte in Vol. % (0 - 60 cm), 2016

Erträge – Zweikulturnutzung Anbaujahr 2016

Kultur	Ertrag dt TM/ha		
	absolut	relativ	
(1) Mais, nach Brache	85	100	
(4) Sudangrashybride nach Grünroggen	88 + 67 = 155	182	

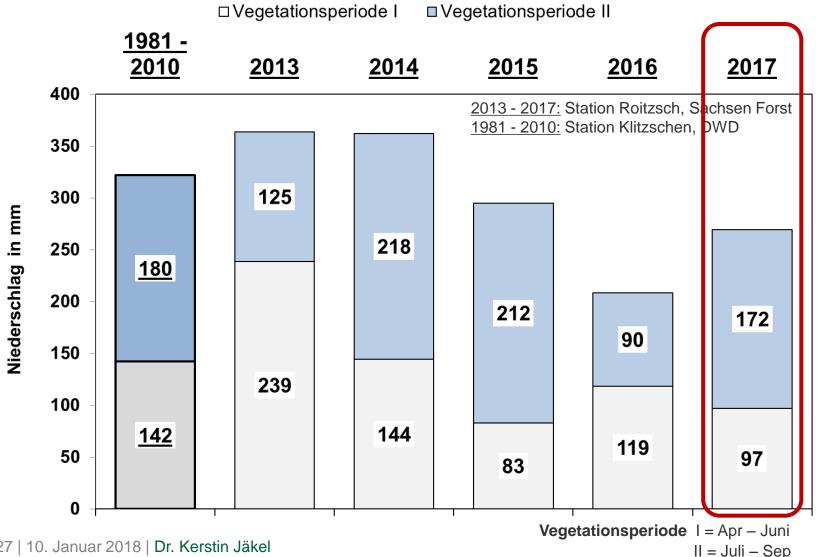
Mais

Gliederung

- (1) Einführung
 - Theoretische Grundlagen
 - Vorstellung des Standorts und methodische Hinweise
- (2) Vergleich Zweitfruchtanbau mit Brache-Mais
- (3) Vergleich von Sorghumarten mit Mais
- (4) Vergleich mehrjähriger Energiepflanzen
- (5) Zusammenfassung

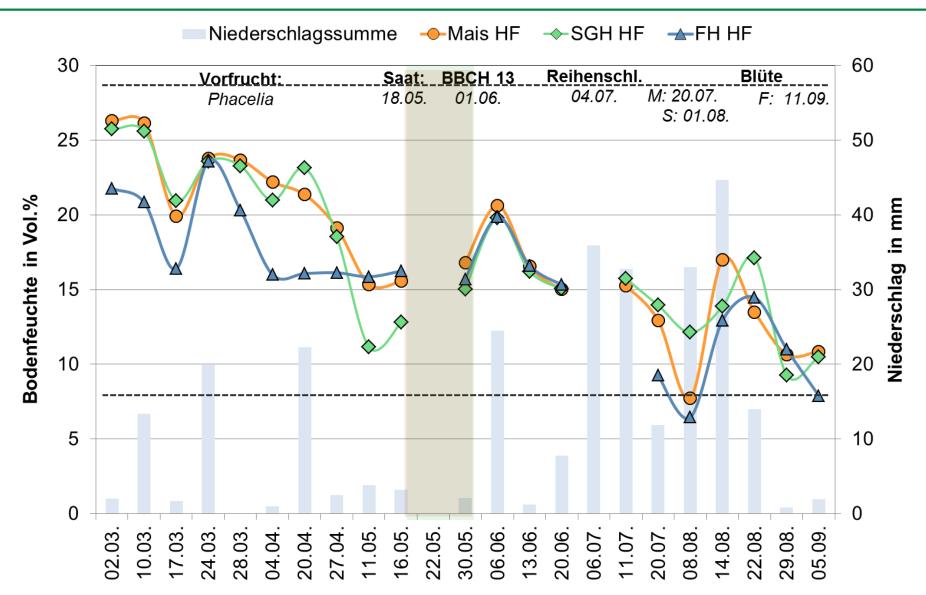
Beprobte Fruchtarten und Anbausysteme (2017)

Bodenfeuchte Vol. %	2017
Einjährige Kulturen*	
(1) Mais (HF)	x
(2) Futterhirse (HF)	x
(3) Sudangrashybride (HF)	x
(4) Wintergerste (GPS) dann später Mais (So- ZwFr)	X
(5) Wintergerste (GPS) dann späte Sudangrashybride (So-ZwFr)	x
TLL, Lysimeterversuche **	
(6) Wassernutzung Mais - Futterhirse	2008-2010
(7) Wassernutzung Futterhirse - Sudangrashybride	2011-2013


^{*} Gravimetrische Messungen

^{**} Quelle: TLL: Knoblauch

Niederschlagsverteilung in den Versuchsjahren 2013 - 2017



HF-Mais vs. HF-Sorghum

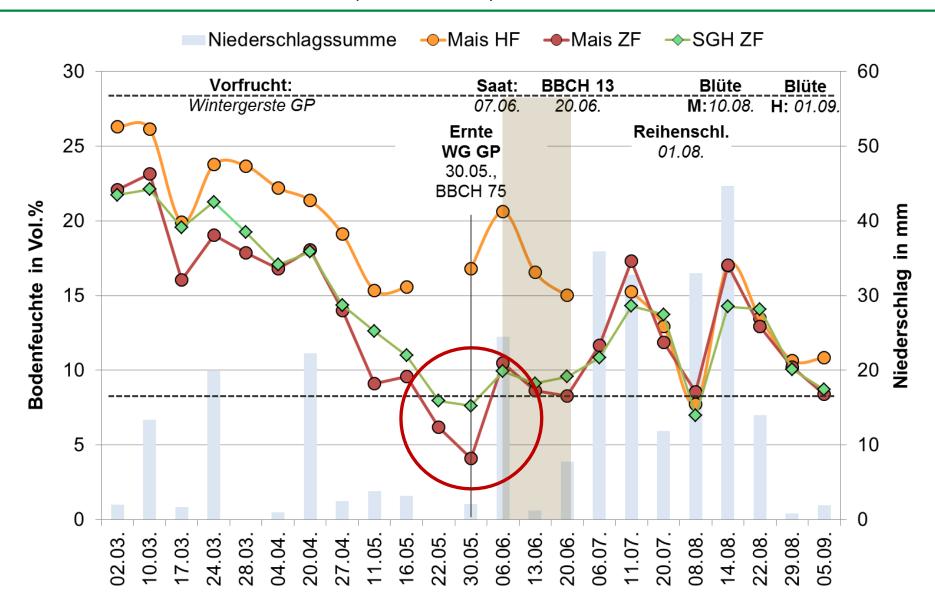
LANDESAMT FÜR UMWELT,
LANDWIRTSCHAFT
UND GEOLOGIE

Freistaat SACHSEN

Bodenfeuchte in Vol. % (0 - 60 cm), 2017

Silomais vs. Futterhirse

5 Wochen nach Saat



HF-Mais vs. ZF-Mais und ZF-SGH

LANDESAMT FÜR UMWELT,
LANDWIRTSCHAFT
UND GEOLOGIE

Bodenfeuchte in Vol. % (0 - 60 cm), 2017

Trockenstress bei Wintergerste

Trockenstress bei Silomais im Jugendstadium

Erträge – Sorghum – Mais Anbaujahr 2017

Kultur	Ertrag dt TM/ha		
	absolut	relativ	
(1) Mais, nach abfr. ZF	198*	100	
(2) Futterhirse, nach abfr. ZF	218	110	
(3) Sudangrashybride, nach abfr. ZF	174	88	
(4) Wintergerste (GPS) dann später Mais (So-ZwFr)	118 + 56 = 174	88	
(5) Wintergerste (GPS) dann späte Sudangrashybride (So- ZwFr)	99 + 56 = 155	78	

^{*} z.T. deutliche Ertragseinbußen durch Maiszünsler

Transpirationskoeffizient und Wassernutzungseffizienz

	Länge der Wachstums- zeit (Aufgang bis Ernte) [d]	Trocken- masse ertrag [kg/m²]	Wasser verbrauch [mm]	Transpirations- koeffizient [kg H ₂ O/kg TM]	Wasser nutzungs- effizienz [kg ha ⁻¹ mm ⁻¹]
	unter potenzielle	n Verdunstun	gsbedingunge	n in der Hauptwach	nstumszeit
Futterhirse	134	3,04	568	184	54,3
Silomais (1993)	135	1,89	361	191	52,4
Winterweizen (1992)	262	1,58	545	345	29,0
		unter aktuellen Verdunstungsbedingungen (natürlicher Niederschlag), tiefgründiger Braunerde-Tschernosem (Löss)			
Futterhirse	134	2,01	480	229	43,7
	unter aktuellen Verdunstungsbedingungen (natürlicher Niederschlag), Para- Rendzina (unterer Keuper)				
Futterhirse	134	1,59	385	242	41,3

Ergebnisse

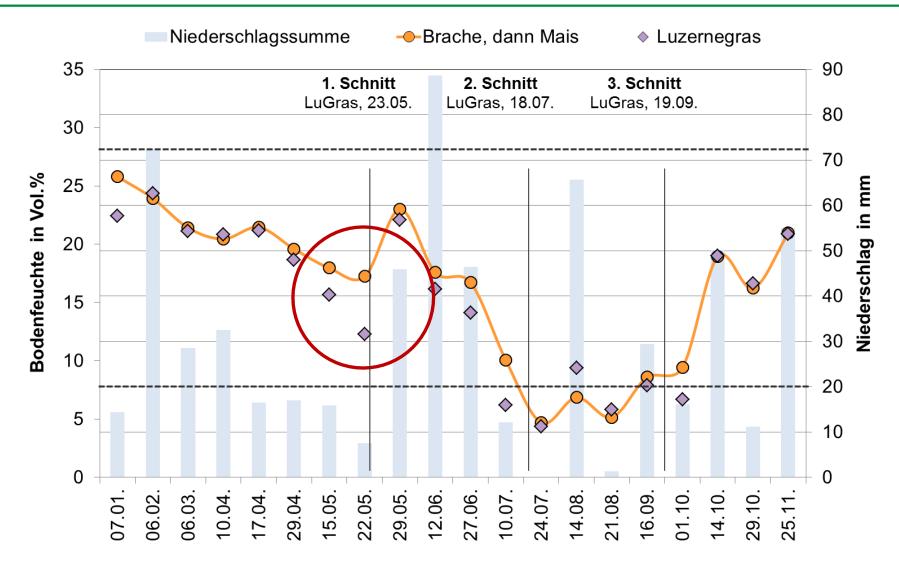
- I Sorghum bicolor produziert unter potenziellen Verdunstungsbedingungen sehr hohe Erträge, z.T. höher als Mais. Das erfordert aber auch große Wassermengen.
- I Die Wassernutzungseffizienz von Sorghum bicolor ist bei ausreichender Wasserversorgung besser als die von Energiemais.
- I Mit abnehmenden Wasserangebot geht diese Vorzüglichkeit zurück. Unter den Niederschlagsverhältnissen im mitteldeutschen Trockengebiet ist die WNE von Energiemais günstiger im Vergleich zu Sorghum bicolor.
- I Dafür hat Sorghum bicolor ein besseres Bodenwasseraneignungsvermögen.
- I Der Transpirationskoeffizient (TK) von Sorghum bic. ist günstiger als der von Sudangrashybriden.
- I Die N-Salden sind durchweg negativ und damit gewässerverträglich. Mit geringerem Wasserangebot wird der N-Saldo ungünstiger entsprechend der geringer werdenden Erträge.

Gliederung

- (1) Einführung
 - Theoretische Grundlagen
 - Vorstellung des Standorts und methodische Hinweise
- (2) Vergleich Zweitfruchtanbau mit Brache-Mais
- (3) Vergleich von Sorghumarten mit Mais
- (4) Vergleich mehrjähriger Energiepflanzen
- (5) Zusammenfassung

Beprobte Fruchtarten und Anbausysteme (2013 bis 2017)

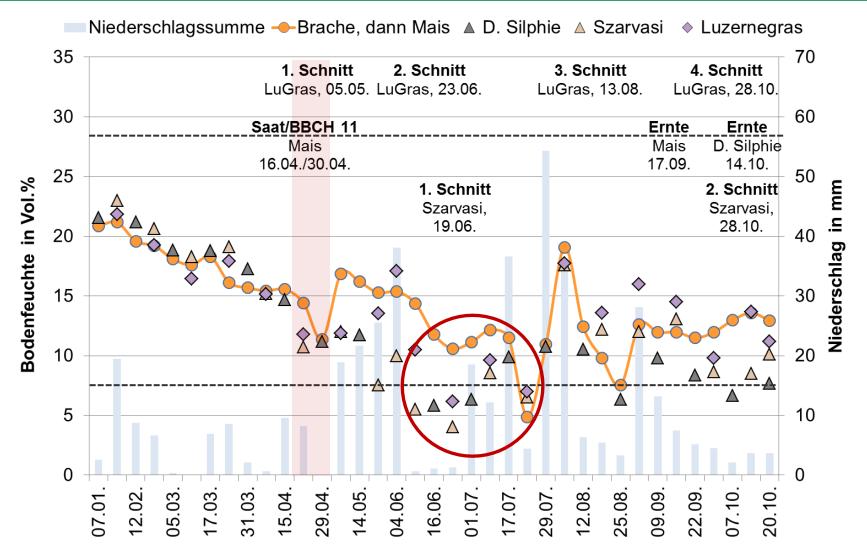
Bodenfeuchte Vol. %	2013	2014	2015	2016	2017			
Mehrjährige Kulturen/Dauerkulturen*								
(1) Luzernegras	x	x						
(2) Durchwachsene Silphie		x	x	x	x			
(3) Szarvasi		x	x	x	x			
(4) Brache				ab Aug.	x			


^{*} gravimetrische und zusätzlich TDR Messungen

HF-Mais vs. Luzernegras

LANDESAMT FÜR UMWELT, LANDWIRTSCHAFT UND GEOLOGIE

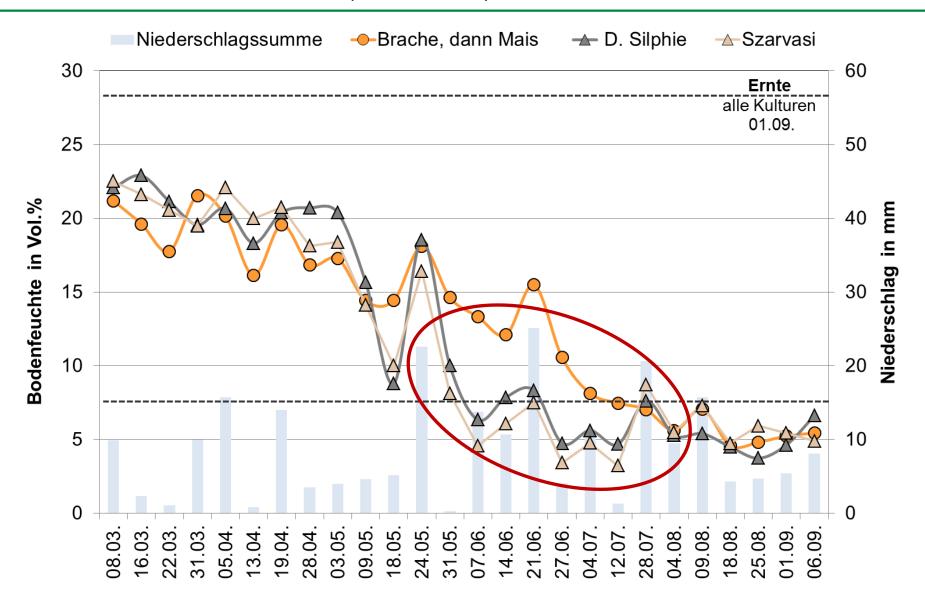
Bodenfeuchte in Vol. % (0 – 60 cm), 2013



HF-Mais vs. Dauerkulturen

LANDESAMT FÜR UMWELT, LANDWIRTSCHAFT UND GEOLOGIE

Bodenfeuchte in Vol. % (0 – 60 cm), 2014

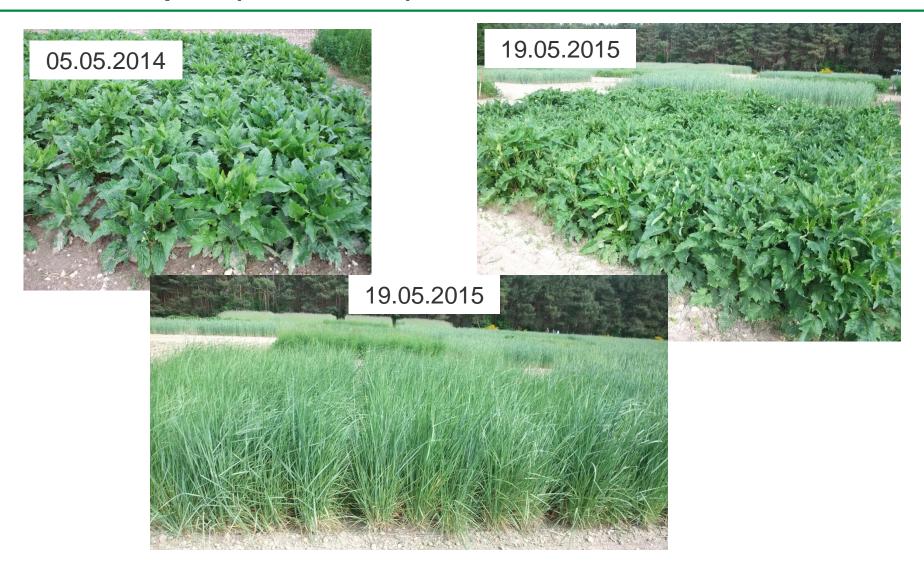


HF-Mais vs. Dauerkulturen

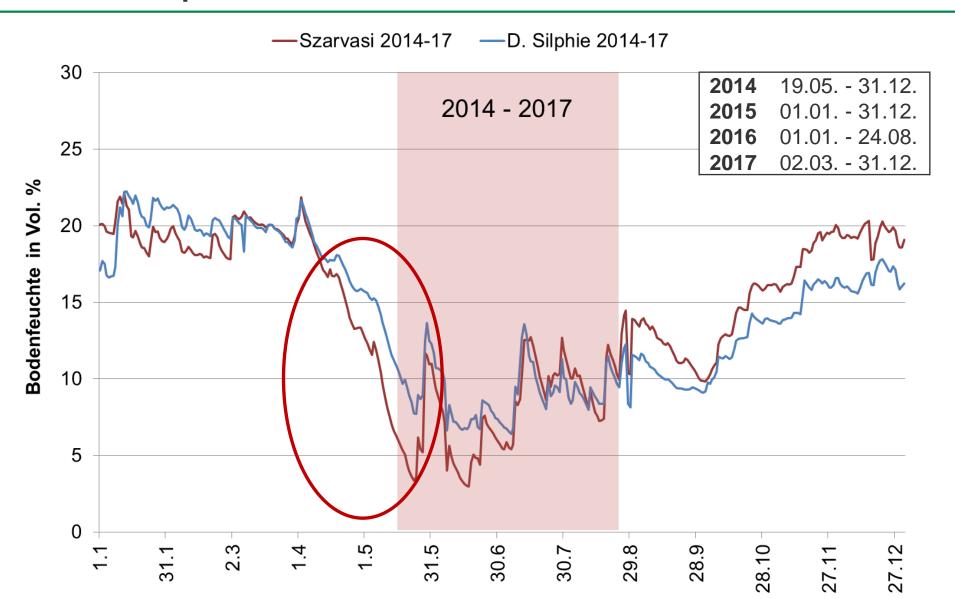
LANDESAMT FÜR UMWELT, LANDWIRTSCHAFT UND GEOLOGIE

Bodenfeuchte in Vol. % (0 - 60 cm), 2016

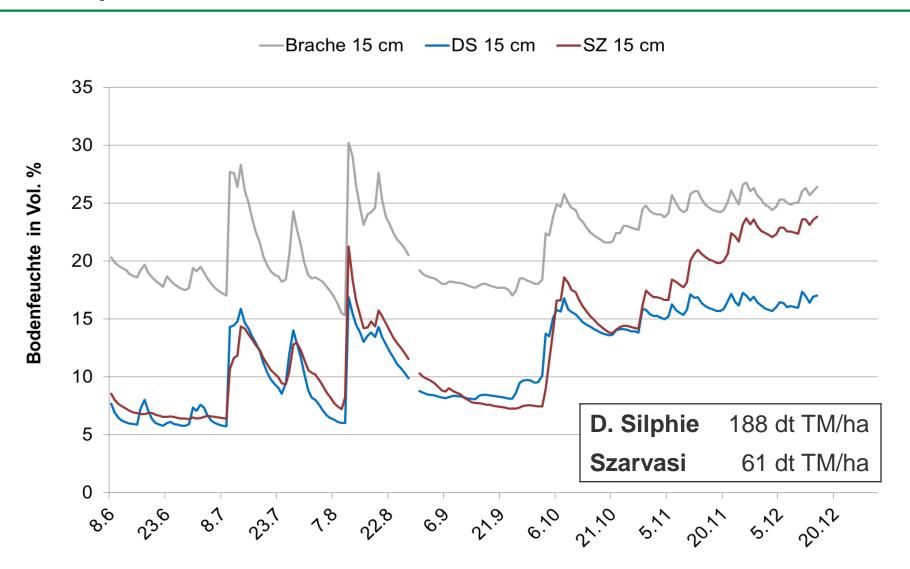
TDR-Sonden


LANDESAMT FÜR UMWELT, LANDWIRTSCHAFT UND GEOLOGIE

(feste Messstellen in 15 und 45 cm Tiefe)



TDR-Messungen in Szarvasi und D. Silphie (2014 – 2017)


TDR-Messungen in Szarvasi und D. Silphie 2014 - 2017

TDR-Messungen in Szarvasi, D. Silphie und Brache, 2017

Erträge – mehrjährige Kulturen

Jahr	2013	2014	2015	2016	2017		
Kultur	Ertrag dt TM/ha						
Mais	108	194	99	85	198*		
Luzernegras	48 (3)	137 (4)	68	-	-		
Durchwachsene Silphie		140	109	115	188		
Riesenweizengras		176 (2)	69	38	62		

^{*} z.T. deutliche Ertragseinbußen durch Maiszünsler

Gliederung

- (1) Einführung
 - Theoretische Grundlagen
 - Vorstellung des Standorts und methodische Hinweise
- (2) Vergleich Zweitfruchtanbau mit Brache-Mais
- (3) Vergleich von Sorghumarten mit Mais
- (4) Vergleich mehrjähriger Energiepflanzen
- (5) Zusammenfassung

Zusammenfassung

Kultur	Ertrag	TK	Gesamt-H₂O- verbrauch	WNE
Mais HF	hoch	niedrig	sehr hoch	+++
Futterhirse HF	hoch	niedrig	sehr hoch	+++
Mais ZF	schwankend	niedrig	hoch	+++
Sudangrashybride ZF	mittel - hoch	niedrig	mittel-hoch	+++
WZFr. GR,WR, LuzG	niedrig	mittel	niedrig	++
WGer GPS spät	(niedrig)	mittel	niedrig	++
Luz	niedrig	hoch	mittel	+
Durchw. Silphie	mittel - hoch	?	mittel	++ ?
Riesenweizengras	niedrig - hoch	?	mittel	+?

Zusammenfassung

- (1) Böden weisen zu Beginn der Vegetationsperiode in der Regel gleiche Bodenwassergehalte, unabhängig vom Bewuchs, auf.
- (2) Abfrierende Zwischenfrüchte haben kaum einen Einfluss auf die Wasserversorgung der Folgefrucht.
- (3) Die Wasserversorgung von Zweitfrüchten ist stärker gefährdet nach genutzten Zwischenfrüchten, jedoch ist die Jahreswitterung entscheidend.
- (4) Das Gesamtsystem von Zwischen- und Hauptfrüchten unterliegt stärkeren Ertragsschwankungen.
- (5) Die Niederschlagsverteilung und die Hauptwasserbedarfszeit der Kultur sind von großer Bedeutung.
- (6) Mehrjährige Pflanzen können die Winterfeuchtigkeit gut nutzen, brauchen jedoch schon ab Anf. Mai viel Wasser.

Vielen Dank für die Aufmerksamkeit!

