

Leguminosen in der Geflügelernährung

Prof. Dr. Gerhard Bellof

5. Nossener Fachgespräch Leguminosen, 11.10.2023

Gliederung

1. Einleitung

- Bedeutung und Eingrenzung der K\u00f6rnerleguminosen f\u00fcr die Gefl\u00fcgelf\u00fctterung
- 2. Futterwert bedeutsamer Körnerleguminosen für die Geflügelfütterung
 - Energiewert
 - Proteinwert
 - Phosphorverwertung
- 3. Möglichkeiten und Grenzen des Einsatzes von Körnerleguminosen in der Geflügelfütterung
 - Mastgeflügel
 - Legehennen
- 4. Zusammenfassung

Einleitung

Spannungsfelder für die Nutztierhaltung in Deutschland

Gesellschaftliche Herausforderungen:

Klima- und Gewässerschutz

► Reduktion der N- und P-Ausscheidungen

Regionalisierung, GVO-Freiheit in der Nahrungsmittelproduktion

- ► Einsatz heimischer (europäischer) Eiweißfuttermittel
- Einsatz GVO-freier Futtermittel

Beachtung des Tierwohls

▶ Berücksichtigung bei Zucht, Haltungs- und Fütterungssystemen

Einleitung

Leguminosen können einen Beitrag zur Bewältigung der genannten Herausforderungen liefern

> "UFOP-Strategie 10 + 10"

BELLOF et al. (2022). Szenarien für den Anbau und die Verwertung von Leguminosen und Körnerraps in Deutschland im Jahr 2030.

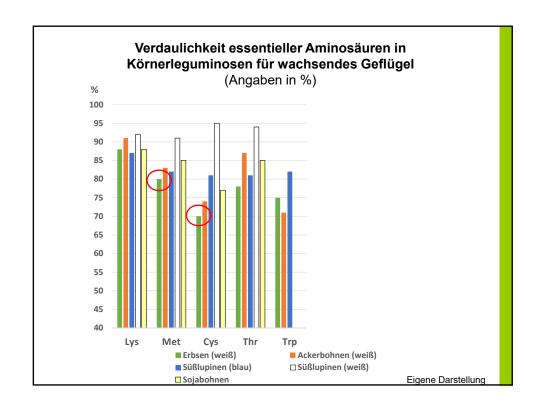
Berichte über Landwirtschaft, 100(2), 1-39.

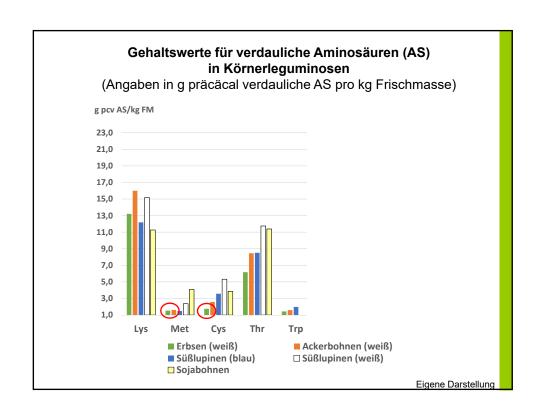
> Körnerleguminosen werden in der Geflügelfütterung

in Deutschland bislang nur marginal eingesetzt.

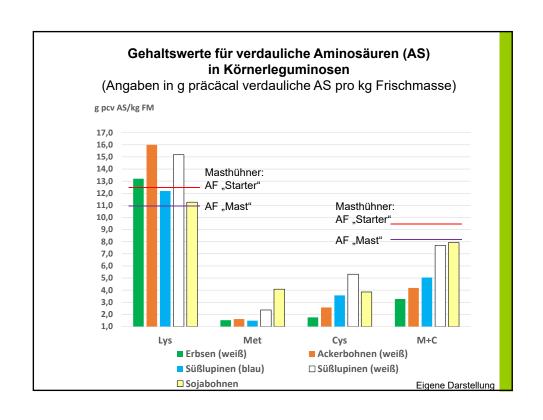
Ausnahme: Körnererbsen

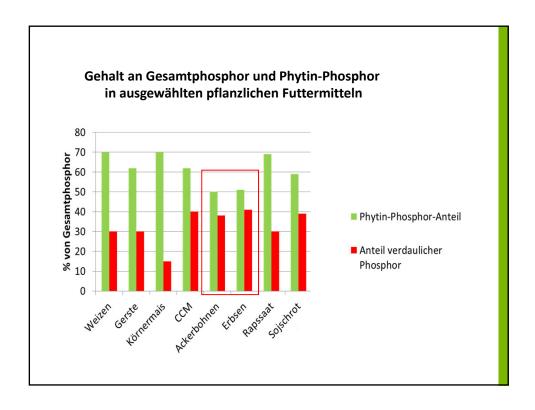
Futterwert bedeutsamer Körnerleguminosen für die Geflügelfütterung


- Energiewert
- Proteinwert
- Phosphorverwertung


Kennwerte zum Futterwert bedeutender Körnerleguminosen für Geflügel

(je kg Futter, 88% Trockensubstanz)


Merkmal		Futter- erbsen (weiß)	Acker- bohnen (weiß/bunt)	Blaue Süß- lupinen	Weiße Süß- Iupinen	Soja- bohnen (getoastet)
Energie	MJ AME _N ¹	11,8	10,7	8,1	10,1	13,6
Roh- protein	g	200	260	289	339	340


 $^{^{\}rm 1}$ AME $_{\rm N}$ nach WPSA-Formel (analysierte Stärkegehalte wurden berücksichtigt); Quellen: Adedokun et al. 2008; Bryden et al. 2009; Jeroch et al. 2016; Kluth et al. 2005; Kluth und Rodehutscord 2006; Rezvani et al. 2008a, b; UFOP-Projekte; Valencia et al. 2009, Sauvant et al. 2004.

in Alleinfuttermischungen für Masthühner schnellwachsender Herkünfte							
	Einheit	Starter Mast					
		010. L	T ¹	1124.	LT		
Energie (ME)	MJ/kg	12,2		12,3			
Rohprotein	%	22,5		20,5			
Aminosäuren	·	total ²	pc verd. ³	total	pc verd.		
Lysin	%	1,40	1,25	1,23	1,09		
Methionin	%	0,55	0,50	0,48	0,45		
Methionin + Cystin	%	1,05	0,93	0,94	(0,83		

Phosphorverdauung Geflügel:

- Geflügel kann Phytin-Phosphor abbauen (ca. 65 %)!
- Aber: mit zunehmender Supplementierung von mineralischem P nimmt der Phytat-Abbau stark ab (65 % -> 30 %).

12

Möglichkeiten und Grenzen des Einsatzes von Körnerleguminosen in der Geflügelfütterung

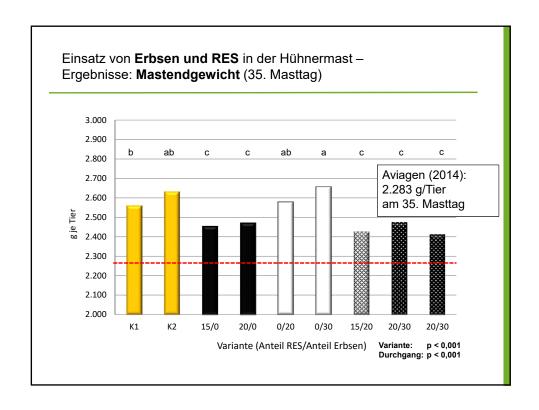
- Mastgeflügel
- Legehennen

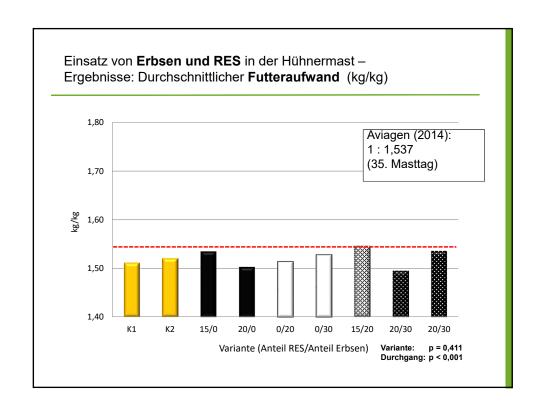
Empfehlungen für Höchstanteile an Körnerleguminosen in Alleinfuttermischungen für Mastgeflügel								
Leguminosenart			Masthühner (Broiler)		Mastputen			
		Starter (bis 4. LW¹)	Mast (ab 4. LW)	Aufzucht (P ² 1/P2)	Mast (P3-4)	Mast (P5-7)		
Ackerbohnen	bunt	10	20	5/10	15	15		
Ackerbonnen	weiß	20	25	15	20	20		
Erbsen	weiß	25	30	10/20	30	25		
Blaue/Weiße Süßupinen	alkaloid- arm	10	15	10/15	25	20		
Sojabohnen	wärme- behandelt	15	15	10	10	10		
Sojakuchen	wärmebeh., < 10 % Fett	20	20	20	20	15		
¹ LW: Lebenswoo Quellen: Bellof 20			och et al. 2	016; Halle 2	016; ergä	nzt.		

Wertbestimmende Inhaltsstoffe und energetischer Futterwert von Erbsen und Rapsextraktionsschrot

(Angaben bei 88 % Trockenmasse in g/kg oder MJ/kg bzw. g/100 g XP)

Merkmal		Erbsen (weiß- blühend)	RES (unge- schält)
Rohprotein	g	200	340
Lysin*	g	7,5	4,4
Methionin*	g	1,0	2,3
Rohfaser	g	57	116
Calcium	g	1,0	7,6
Phosphor	g	4,1	10,5
ME Geflügel	MJ	11,8	7,5


^{*} g/100 g Rohprotein;


Quellen: Bellof u. a., 2016; Weber u. a., 2016; Jeroch u. a., 2008.

Einsatz von **Erbsen und RES** in der Hühnermast – Einsparpotentiale an SES

Futtermittel	Versuchsvariante (Mischungsanteile in den AF, in %)								
	1	2	3	4	5	6	7	8 <mark>1</mark>	9 2
RES/Erbsen	K1	K2	(15/0)	20/0	0/20	0/30	15/20	20/30	20/30
SES-Anteil	27,6	22,6	13,7	10,8	17,1	14,2	8,0	3,0	1,5
RES			14,5	19,3			14,5	19,3	19,3
Erbsen					19,3	29,0	19,3	29,0	29,0
SES- Einsparung		-18%	-50%	-61%	-38%	-48%	-71%	-89%	-95%

Quelle: Bellof u. Weindl, 2016

Fütterungsversuche mit Erbsen bei Legehennen (I)								
Autor(en)	Erbsenher- kunft	Anteil im Alleinfut- ter (%); Ra- tionstyp (K)	Legehen- nenher- kunft	Prüfzeit- raum	Ergebnisbewertung			
HALLE (2005)	weißblü- hende Sorten, tanninarm	20/30/40, stufenwei- ser Austausch von SES und Mais durch Erbsen; Mais/SES/ Sojaöl	Weisse Lehybri- den (LSL)	ab Legebe-	Kontrollgruppe (0 % Erbsen) 105 g FV/d, 94 % LL, 55 g EM, 2,0 kg FA/kg EM; kein signifikanter Einfluss steigender Erbsenanteile auf alle Leistungsparameter			
Quelle: Jeroch et al. 2016								

kunft p		
		Legeleistungs- und Eiqualitätsparameter durch steigende Erbsenanteile in der Futtermischung nicht nachteilig beeinflusst, bis 50 % Erbsen im Hennenfutter möglich
	Jeweils 50 % LSL und e LB S	Jeweils 50 52 Wochen % LSL und ab 24 LW B

Empfehlungen für Höchstanteile an Körnerleguminosen in Alleinfuttermischungen für Legehennen

Leguminosenar	Legehennen			
		Eipro- duktion	Repro- duktion	
Ackerbohnen	bunt	10	5	
Ackerbonnen	weiß	10	5	
Erbsen	weiß	30	30	
Blaue/Weiße Süßlupinen	alkaloid-arm	10	10	
Sojabohnen	wärme- behandelt	15	15	
Sojakuchen	wärmebeh., < 10 % Fett	20	20	

Quellen: Bellof 2013; Bellof et al. 2013; Jeroch et al. 2016; Halle 2016; ergänzt.

Zusammenfassung

- Körnerleguminosen mit geringen Anteilen an antinutritiven Inhaltsstoffen können in der Geflügelfütterung in hohen Mischungsanteilen eingesetzt werden.
- ➤ Begrenzend für den Einsatz in der Geflügelfütterung sind die geringen Gehalte an Schwefel-haltigen Aminosäuren
 - konventionelle Fütterung: Supplementierung mit Methionin;
 - ökologische Fütterung: Supplementierung mit Methionin-reichen Futtermitteln.

