120 917 B 53/2 2009 – 2013

Biomasseabhängige N-Düngung zur umweltorientierten Düngebedarfsermittlung

N-Düngebedarfsermittlung Winterraps

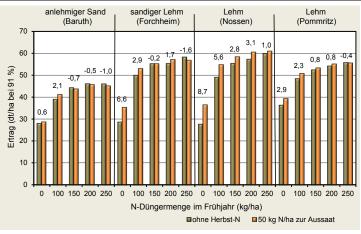
1. Versuchsfrage:

Optimierung der N-Düngung zu Winterraps unter Berücksichtigung von spektralen Reflexionsmessungen zur Quantifizierung der biomasseabhängigen N-Aufnahme.

2. Prüffaktoren:

		Versuchsorte	Landkreis	Prod.gebiet
Faktor A:	Aussaattermin	Baruth	Bautzen	D
Faktor B:	N-Herbstdüngung	Forchheim	Erzgebirgskreis	V
Faktor C:	N-Düngung Frühjahr	Nossen	Meißen	Lö
Stufen:	2/2/5	Pommritz	Bautzen	Lö

3. Versuchsanlage:


Spaltanlage mit je 4 Wiederholungen

4. Auswertbarkeit/Präzision:

Die Präzision der Versuche lässt eine Auswertung zu.

5. Versuchsergebnisse:

PG Aussaat-			saat- N - Düngung in kg N/ha			Samen-Ertrag dt/ha			
			Herbst Frühjahr		bei 91% TS 2009 bis 2012				
			zur Saat	VB	Streckungswachstum				
						Forchheim	Nossen	Pommritz	Baruth
1	111	früh bis normal	ohne	0	0	34,8	27,8	37,2	28,1
2	112	früh bis normal	ohne	0	100	49,3	49,1	49,5	39,2
3	113	früh bis normal	ohne	50	100	54,3	55,5	53,6	44,4
4	114	früh bis normal	ohne	100	100	55,3	57,5	55,3	46,2
5	115	früh bis normal	ohne	150	100	56,9	59,9	56,9	46,1
6	121	früh bis normal	50	0	0	37,4	36,5	40,1	28,8
7	122	früh bis normal	50	0	100	50,9	54,7	51,8	41,2
8	123	früh bis normal	50	50	100	55,5	58,3	54,4	43,6
9	124	früh bis normal	50	100	100	57,6	60,4	56,3	45,7
10	125	früh bis normal	50	150	100	52,7	60,9	56,6	45,1
11	211	spät	ohne	0	0	30,9	28,6	34,3	25,2
12	212	spät	ohne	0	100	46,2	48,2	48,4	36,8
13	213	spät	ohne	50	100	51,7	52,3	52,5	42,4
14	214	spät	ohne	100	100	52,7	56,1	54,3	43,7
15	215	spät	ohne	150	100	56,1	57,0	54,4	44,4
16	221	spät	50	0	0	35,0	35,4	36,4	26,9
17	222	spät	50	0	100	46,5	51,5	51,1	39,3
18	223	spät	50	50	100	53,0	55,7	53,8	42,4
19	224	spät	50	100	100	54,3	58,7	55,2	44,1
20	225	spät	50	150	100	53,8	59,1	56,7	43,9
				GD a gepoolt		2,4	2,5	2,1	1,6
GD ab gepoolt					2,5	1,8	1,7	1,9	
				GD abc gepoolt		2,1	1,6	1,7	1,4

Mehr-/Minder-Ertrag bei optimaler Aussaatzeit in Abhängigkeit von zusätzlicher Herbst-N-Gabe und gestaffelter Frühjahrs-N-Düngung (Mittel 2009 – 2012)

Abbildungen aus: Schliephake, Müller, 2013

6. Schlussfolgerungen/Handlungsbedarf:

- Verspätete Aussaat und verhaltene Vorwinterentwicklung können sich negativ auf das Ertragsniveau auswirken. Dies lässt sich nicht durch höhere Stickstoffdüngung ausgleichen.
- Auf leichten und flachgründigen Böden ist eine zusätzliche Herbst-N-Gabe meist nicht sinnvoll. Auf tiefgründigen Löss-Standorten kann sie bei suboptimalen Frühjahrsgaben zu leichten Mehrerträgen führen.

Versuchsdurchführung: LfULG	Themenverantw.:	Abt. 7 – Pflanzliche Erzeugung	Erntejahr
ArGr Feldversuche	Referat:	71 Pflanzenbau	
Ref. 72, Frau Trapp	Bearbeiter:	Herr Dr. Grunert	2009 – 2012