120 917 B 53/2 2009 - 2013

Biomasseabhängige N-Düngung zur umweltorientierten Düngebedarfsermittlung

N-Düngebedarfsermittlung Winterraps

1. Versuchsfrage:

Optimierung der N-Düngung zu Winterraps unter Berücksichtigung von spektralen Reflexionsmessungen zur Quantifizierung der biomasseabhängigen N-Aufnahme.

2. Prüffaktoren:

		Versuchsorte	Landkreis	Prod.gebiet
Faktor A:	Aussaattermin	Baruth	Bautzen	D
Faktor B:	N-Herbstdüngung	Forchheim	Erzgebirgskreis	V
Faktor C:	N-Düngung im Frühjahr	Nossen	Meißen	Lö
Stufen:	2/2/5	Pommritz	Bautzen	Lö

3. Versuchsanlage:

Spaltanlage mit je 4 Wiederholungen

4. Auswertbarkeit/Präzision:

Die Präzision der Versuche lässt eine Auswertung zu.

5. Versuchsergebnisse:

PG Aussaat-		N-Düngung in kg/ha		Ertrag dt/ha bei 91 % TS		Ölertrag (dt/ha)						
	zeit	Herbst	Vegetations- beginn	Streckungs- wachstum	Baruth	Forchheim	Nossen	Pommritz	Baruth	Forchheim	Nossen	Pommritz
1	normal	ohne	0	0	30,1	35,9	21,7	43,4	14,2	16,1	10,0	19,9
2	normal	ohne	0	100	37,7	51,5	43,7	54,3	16,4	22,3	19,4	23,7
3	normal	ohne	50	100	46,2	56,5	49,6	55,6	20,0	23,7	22,3	23,9
4	normal	ohne	100	100	50,5	55,5	54,0	57,1	21,8	23,1	23,8	24,2
5	normal	ohne	150	100	48,5	60,2	54,6	59,9	20,6	24,8	23,7	25,4
6	normal	50	0	0	34,6	43,9	27,3	48,1	16,3	19,8	12,7	21,8
7	normal	50	0	100	46,6	54,8	47,4	57,5	20,3	23,3	21,4	25,1
8	normal	50	50	100	48,3	56,1	54,8	56,8	21,0	23,8	24,3	24,4
9	normal	50	100	100	50,1	57,5	54,3	57,6	21,4	24,0	24,2	24,3
10	normal	50	150	100	47,6	53,9	55,7	58,9	20,3	22,0	23,9	24,8
11	spät	ohne	0	0	27,0	29,8	28,8	42,1	12,7	13,2	13,2	19,3
12	spät	ohne	0	100	33,8	48,0	43,9	55,0	14,4	20,8	19,7	24,1
13	spät	ohne	50	100	45,0	52,2	47,7	56,6	19,3	22,4	21,1	24,3
14	spät	ohne	100	100	44,3	55,8	54,5	57,0	19,2	23,2	24,1	24,4
15	spät	ohne	150	100	46,3	59,2	55,7	56,3	19,7	24,8	24,1	24,0
16	spät	50	0	0	30,1	32,9	30,8	44,7	14,3	14,7	14,1	20,4
17	spät	50	0	100	41,0	47,0	48,7	56,1	18,1	20,4	21,6	24,5
18	spät	50	50	100	43,7	54,3	53,5	56,2	19,3	23,2	23,7	24,5
19	spät	50	100	100	45,9	53,6	57,3	57,8	19,8	22,6	25,1	24,8
20	spät	50	150	100	48,4	58,1	55,9	58,7	20,9	23,7	23,9	24,9
				GD _{5%} (A)	1,9	2,9	4,1	2,9				
				GD 5% (B)	0,9	1,5	2,7	1,6			-	
				GD 5% (C)	2,2	2,0	2,5	2,9				

6. Schlussfolgerungen/Handlungsbedarf:

- Bei ausreichend langer Vegetationszeit nimmt der Raps im Herbst den verfügbaren N auf und setzt ihn in Pflanzensubstanz um. Späte Saattermine konnten zumeist nicht vom zusätzlichen Herbst-N profitieren.
- Der über das normale von 45 bis 60 kg N/ha aufgenommene N ist im Frühjahr bei der Ermittlung des N-Bedarfs voll anzurechnen.
- Das Wiegeverfahren gab die Substanzbildung und die damit einhergehende N-Aufnahme gut wieder. Die an den jeweiligen Standorten durchgeführten Reflexionsmessungen und daraus abgeleiteten Bestandesindices standen in enger Beziehung dazu. Sie waren jedoch sehr standortbezogen.
- Die optimale N-Menge war vom Standort abhängig. Der höchste Ölertrag wurde mit 150 bis 200 kg N/ha erzielt.

Versuchsdurchführung: LfULG	Themenverantw.:	Abt. 7 - Pflanzliche Erzeugung	Erntejahr
ArGr Feldversuche	Referat:	71 Pflanzenbau, Nachwachsende Rohstoffe	
Ref. 76, Frau Trapp	Bearbeiter:	Herr Dr. habil. Albert, Herr Dr. Schliephake	2009