Strategien für extensive Landbaumethoden den Klimawandel zu mildern und sich an ihn anzupassen

Das SOLMACC Projekt

Strategies for Organic- and Low-input-farming to Mitigate and Adapt to Climate Change (SOLMACC)

Finanziert durch: EU Life Programm

Projektländer: DE, IT, SE, Brüssel

Projektdauer: 01/09/2013 - 31/08/2018

Projektpartner:

Die SOLMACC Ziele

 Demonstration von klimafreundlichen Praktiken

 Reduzierung von THG Emissionen durch die Massnahmen

· Klimaanpassung der Betriebe

 Wissensaustausch und – transfer

Die 12 SOLMACC Demonstrationsbetriebe in Deutschland, Italien und Schweden

SOLMACC

Schwerpunkt im Vortrag: Strategien den CO2-Ausstoß zu verringern

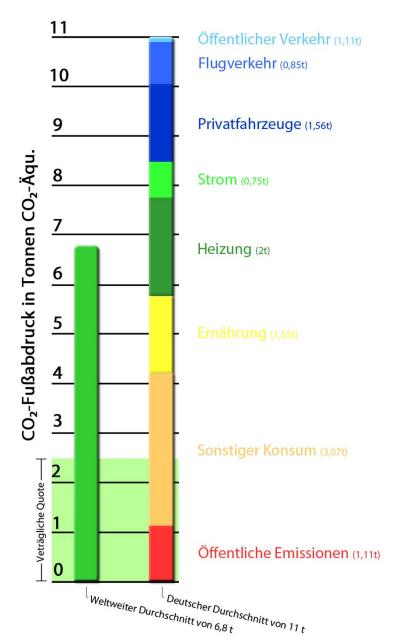
THG aus der Landwirtschaft

	Treibhaus- gasemissionen in Deutschland (Mio. t CO2-Äqui- valent)	wirtschaft (Mio.	daran der Anteil der Land- wirtschaft (in Prozent)
2009	906	63,1	6,96%
2010	941	62,3	6,62%
2011	922	63,9	6,94%
2012	926	63,5	6,85%
2013	945	64,6	6,84%
2014	902	66,1	7,33%
1990	1.248	77,7	6,23%17

Quelle: Umweltbundesamt (2016).18

Tabelle 2.3: Kumulierte THG-Emissionen aus der Bereitstellung von Vorleistungen für die Landwirtschaft (2007)

Vorleistungen der Landwirtschaft	Einheit	Inlandsabsatz ku	mulierte THG-Emissionen in Mio. t CO ₂ -Äq
Sojamehl/-kuchen 1)	t	4.569.000	3,8
N-Dünger	t N	1.679.607	9,6
P-Dünger	t P ₂ O ₅	25.856	0,0
K-Dünger	t CaO	238.525	0,1
Ca-Dünger ²⁾	t CaO	1.538.299	0,3
Pestizide	t Wirkstoff	40.983	0,2
Bauten 3)	Mio. €	1.700	0,7
Ausrüstung (Fahrzeuge und Landmaschinen)	Mio. €	5.925	2,2
Instandhaltung (Maschinen und Bauten)	Mio. €	2.618	0,4
Dienstleistungen (inkl. Tierarzt und Medikamente)	Mio. €	7.391	1,0
Gas und Strom	Mio. €	1.264	9,5
Vorleistungen insgesamt	. Treibstoffe:	6 Mio. t CO2	2-Äq. 27,8


Anm:

- 1) ohne Berücksichtigung von Landnutzungsänderungen.
- 2) Kohlensaurer Kalk und Branntkalk; ohne Ca-Absatz in der Forstwirtschaft.
- 3) ohne Wohnbauten, landw. Wegebau oder andere staatl. Infrastrukturmaßnahmen für Landwirtschaft.
- 4) auf Brenn- und Treibstoffe entfallen ca. 6 Mio. t CO2-Äq

Quelle: Berechnungen von Osterburg et al. (2013a: 17).

THG-Freisetzung pro Person und Jahr in Deutschland:

11t CO2-Äquivalente

Projekt-Maßnahmen

- Lagern und Kompostieren von organischen Düngern
- Fruchtfolge mit Leguminosen erweitern
- Bodenbearbeitung extensivieren
- Hecken, Gehölze, Forste anlegen und bewirtschaften

Methoden

- Auswertung der Schlagkarteien der Bio-Betriebe
- Umsetzung der Maßnahmen (Fruchtfolge, Bodenbearbeitung) auf ausgewählten Flächen der Betriebe
- C-Gehalte der Projektflächen analysiert
- Berechnung der CO2-Äquivalente auf Basis der IPCC-Empfehlungen und der Datenbank Eco-Invent (weltweit führendes Datensystem)

Emissionen Wintergetreide

kg CO2-eq/ha	Wintergetreide, n = 10			
	min	max	mw o. Tr.	mw mit Tr.
Bodenbearbeitung	158	511		
Saat/Pflanzung	73	194		
Düngung	1	911		
Pflanzenschutz/Pflege	0	0		
Bewässerung	0	0		
Ernte	167	245		
N2O-Emissionen	43	135		
Transport	11	67		
Trocknung	0	1166		
Total	768	2899	869	1976

Tr. = Trocknung

Körnerleguminosen, n = 8

CO2 eq./ha a	min	max
Bodenbearbeitung	347	511
Saat/Pflanzung	91	180
Düngung	911	911
Pflanzenschutz/Pflege	0	0
Bewässerung	0	0
<u>Ernte</u>	167	167
N2O-Emissionen	23	81
Transport	8	57
Trocknung	48	68
Total	729	1762

Gemüse und Kartoffeln, n= 16

CO2 eq./ha a	min	max
Bodenbearbeitung	195	562
Saat/Pflanzung	27	2777
Düngung	1	599
Pflanzenschutz/Pflege	57	100
Bewässerung	34	204
Ernte	24	501
N2O-Emissionen	1	112
Transport	40	3019
Klimatisierung	2531	3057
Total	640	7291

Lagern und Kompostieren von organischen Düngern Beispiel: Emission von Rindermist

Menge	Misthaufen CO2-eq.	Kompostierung, aerob Minderungspotenzial
115 t	77 t	-9% bis -63%

Fruchtfolge mit Leguminosen optimieren

Veränderung an CO2 eq. im Gesamtbetrieb

+2% bis -12 %

Bis 50% Leguminosen in der Fruchtfolge

Bodenbearbeitung

Einsparpotenziale

Pflugtiefe reduzieren: 0,5 -1,5 l/ha cm

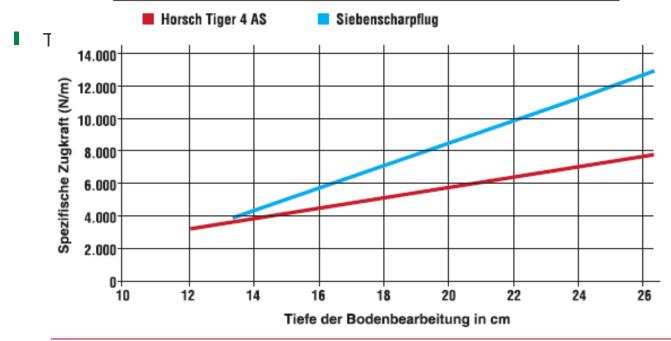
Grubber statt Pflug: 49 kg CO2-eq./ha

Reduzieren der Einsatzfrequenz des Pfluges

Pfluglose Bodenbearbeitung: 125 kg CO2/ha a

Projektergebnisse:

Einsparung 0 bis 12% vom Energieverbrauch des Betriebes


Bodenbearbeitung

Zugkraftbedarf

mittlerer Boden, Parabraunerde

Quelle: GÖRTMÜLLER, Zeitschrift Profi, Sonderdruck 06/ 2006

SPEZIFISCHE ZUGKRAFT PRO METER BEI ZUNEHMENDER ARBEITSTIEFE

Hecken, Bäume und Forst

- C speichern von Hecken-Biomasse (überirdisch): 5-45 t/ha
- C-Anreicherung von Baum-Biomasse (überirdisch & unterirdisch): ca. 7.8
 t/ha/Jahr
- C-Anreicherung im Boden durch Gehölze: 0,455 t/ha/Jahr
- Nutzung von Holz statt fossiler Brennstoffe je nach Intensität der Nutzung: 3,2 bis 20 t CO2 eq./ha/Jahr

Minderungspotenzial an CO2-Âq. in Deutschland

Potenzielle Emissionsminderung bzw. Speichererhöhung im Wald

Maßnahme	Potentielle Einspeicherung
Wiedervernässung Waldmooren	2,5t/ha/a
Aufforstung Weidelandschaft	18t/ha/a (Paul et al., 2009)
Holzprodukte Stoffliche Substitution	67,8 Mio. t/a bis 2020 (Rüter, 2011)

Quelle: BMUB/BMEL (2015).66

Mein Fazit

- Wesentliche CO2-eq.-Emissionen der landwirtschaftlichen Erzeugung sind verbunden mit Trocknung, Kühlung, teilweise auch mit Transporten und der Dunglagerung/Ausbringung.
- Fruchtfolgen und Arbeitsgänge auf den landwirtschaftlichen Flächen selbst bieten weniger Einsparpotenzial. Dabei müssen optimierte Fruchtfolgen hinsichtlich der Emissionen nicht unbedingt optimal sein hinsichtlich der Klimaanpassung. Zusätzlich muss die Effizienz in Bezug auf die Emissionen je Erntemenge beachtet werden.
- Die Energie-Holznutzung auf Flächen, die nicht in Konkurrenz zum Ackerbau stehen, bietet ein beachtenswertes Potenzial für die Verbesserung der CO2-Bilanz.
- Wahrscheinlich bergen grundlegende Änderungen in den Verbrauchsgewohnheiten der Bevölkerung auch hinsichtlich der Lebensmittel das größte Einsparpotenzial der Landwirtschaft für klimawirksame Gase.
- Denkbar ist auch ein steigender Ausstoß von klimawirksamen Gasen im Zuge des Klimawandels durch mehr Bedarf an Beregnung und Kühlung von Ernteprodukten und in anderen Fällen durch abnehmende Ernteerträge je Flächeneinheit bei eher konstantem Aufwand.

Vielen Dank für Ihre Aufmerksamkeit!

000800). The

responsible for

w_MBeratung_{≥u}