

Landwirtschaftlicher Gewässerschutz in Sachsen

Bericht zur Praxisdemonstration 2020 im Auftragsgebiet Nordsachsen zum Thema Nitrat

Differenzierte organische Grünlanddüngung im Herbst zur Abschätzung der Nährstoffverwertung

1. Versuchsfrage

Auf Dauergrünland kommen vielfach zum Ende der Ausbringungsfrist noch Gärrest/Gülle zum Einsatz. Mit der Demonstration soll der Frage des Verbleibs und der Wirksamkeit des eingesetzten Stickstoffs auf den Ertrag und den Nährstoffentzug des ersten und zweiten Grasschnitts im Folgejahr demonstriert werden.

2. Ausgangsbedingungen

Ort: Dippeldorf

Leitbodenform: vergleyter Stagnogley aus periglaziärem Kies führendem Sand über

tiefem glazigenen Kies führendem Lehm

Bodenart: anlehmiger Sand

Bodennutzung: Mähwiese
OWK: Loessnitzbach
GWK: Moritzburg

Tabelle 1:Nährstoffgehalte des eingesetzten Gärsubstrats

Termin	рН	TS	N _{ges}	NH ₄ -N	P _{ges}	K _{ges}	Sg _{es}	Mg _{ges}
		%		%	in der O	riginalsub	stanz	
Oktober 2019	7,9	8,1	4,9	3,2	1,5	3,9	0,6	1,8
Februar 2020	7,9	5,6	4,6	2,6	0,5	4,5	0,4	0,5

Tabelle 2: Versorgung des Bodens mit Grundnährstoffen (0-30 cm)

Streifen	pH-Wert	P CAL	K CAL	Mg CaCl₂
			mg/100 g Boden	
mineralisch 1	5,8	2,1	9,4	23,8
Gärrest Herbst	5,1	2,4	11,7	35,6
mineralisch 2	5,5	3,6	11,5	25,6
Gärrest Frühjahr	5,9	3,4	4,5	31,4
mineralisch 3	5,5	3,5	10,7	32,6

Mittelwert	5.6	3.0	9.6	29,8
wiitteiwert	5,6	3,0	9,0	29,0

3. Anlageplan

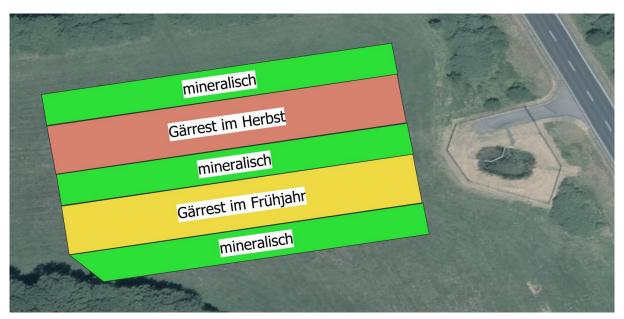


Abbildung 1: Lageplan der Prüfglieder (Quelle: Sachsen Atlas)

Tabelle 3: Prüfglieder und die ausgebrachten Stickstoffmengen

_		_	_	
Variante	Herbst-N	NH₄-N kg/ha im Spätherbst	1. N-Gabe	2. N-Gabe
mineralisch	ohne	0	50 kg N/ha als KAS	70
organisch/ mineralisch	Gärsubstrat	60	50 kg N/ha als KAS	70
organisch/ mineralisch	ohne	0	52 kg NH ₄ -N und 92 kg N _{ges} /ha als Gärsubstrat	70

4. Material, Methoden und Ergebnisse

4.1 Versuchsdurchführung

Zur besseren Abschätzung der Wirksamkeit des im Herbst und im Frühjahr eingesetzten Stickstoffs wurden ungedüngte Fenster eingerichtet. Zur ersten N-Gabe wurden bei der Ausbringung des N-Düngers in den mittleren drei Streifen rund 24 m² mit Folie abgedeckt. Zur zweiten Gabe wurde der Streuer in diesem Bereich ganz ausgeschaltet, so dass neben einer insgesamt ungedüngten Fläche ein Bereich ohne zweite N-Gabe verblieb. Eine Übersicht zu den 2020 durchgeführten Maßnahmen gibt Tabelle 2. Bereits die Ergebnisse der Grundbodenuntersuchung wiesen teilweise deutliche Unterschiede zwischen den Teilstücken auf (Tabelle 2), diese waren allerdings sehr willkürlich.

Tabelle 4: Übersicht zu den im Jahr 2019 durchgeführten Maßnahmen

Termin	Maßnahme		
19.09.2019	Beprobung Grundnährstoffe und Ausgangswert-N _{min}		
14.10.2019	letzter Grasschnitt		
16.10.2019	Gärrestausbringung mit Schleppschlauch 19 m³/ha mit 60 kg NH4-N/ha und 93 kg N ges /ha		
21.11.2019	Probenahme N _{min}		
13.02.2020	Probenahme N _{min}		
18.02.2020	Gärrest-Fugat mit Schleppschlauch 20 m³/ha mit 52 kg NH4-N/ha und 92 kg Nges /ha		
16.03.2020	50 kg N/ha als KAS		
04.06.2020	1. Grasschnitt		
01.07.2020	70 kg N/ha als KAS		

4.2 N_{min}-Untersuchungen vor Vegetationsbeginn

Ergebnisse

Abbildung 2 : Übersicht zu den N_{min}-Ergebnissen vor Vegetationsbeginn 2020

Zwar sind N_{min}-Untersuchungen für die Düngebedarfsberechnung auf Grünland nicht vorgesehen, zur Überprüfung des Verbleibs des im Oktober ausgebrachten N aus dem Gärrest wurden jedoch vor Beginn der Vegetation N_{min}-Beprobungen in 0-60 cm Bodentiefe vorgenommen. Die Ergebnisse sind in Abbildung 2 zusammengestellt. Der Ausgangswert je Streifen lag bei ca. 40 kg in 0-60 cm Bodentiefe. Bis Ende November war insgesamt eine Zunahme zu beobachten. Der eingesetzte Ammonium-N konnte daher mit der Beprobung weitgehend wiedergefunden werden. Über Winter sank der Wert in den nicht gedüngten Streifen leicht und im Streifen mit Gärrest-N deutlich ab. Im Februar lag der N_{min}-Gehalt dann recht einheitlich bei 35 bis 40 kgN_{min} / ha. In welchem Umfang es sich um N-Austräge bzw. um eine N-Immobilisation (Einbau in die vorhandene pflanzliche und mikrobielle Biomasse, Einbau in organische N-Verbindungen des Bodens) handelt, lässt sich aus diesen Ergebnissen nicht abschätzen.

Aufgrund der langen Frühjahrstrockenheit entwickelte sich der Grasbestand ungleichmäßig und nahm von Standardreihe 1 zu Standardreihe 3 kontinuierlich ab. Für die Auswertung war deshalb nur ein Vergleich der jeweiligen Standardreihen mit dem dazwischen liegenden Prüfglied angezeigt. In den folgenden Abbildungen zur Trockenmassebildung und dem N-Entzug werden deshalb die jeweiligen Prüfglieder mit den Mittelwerten der sie umschließenden Standartreihen verglichen.

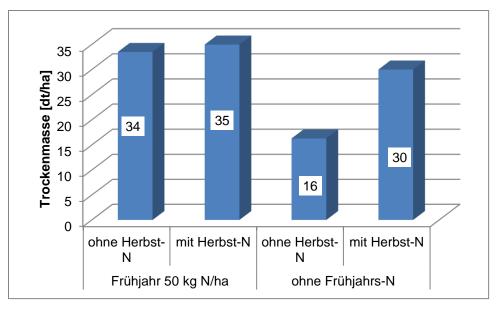


Abbildung 3: Trockenmasseerträge mit und ohne Düngung im Herbst

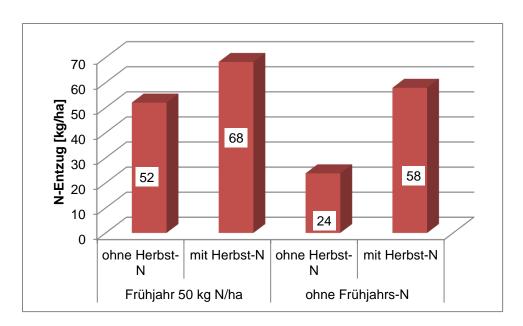


Abbildung 4: N-Entzug durch den ersten Grasschnitt mit und ohne Herbstdüngung

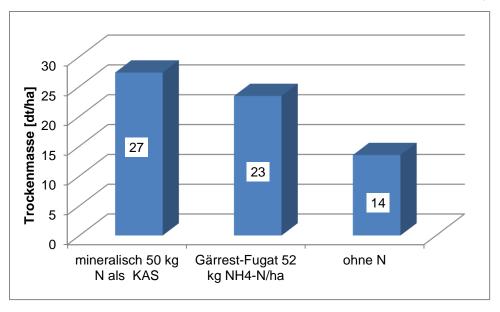


Abbildung 5: Trockenmasseerträge bei mineralischer und organischer Düngung zum ersten Grünlandschnitt im Vergleich zur ungedüngten Variante

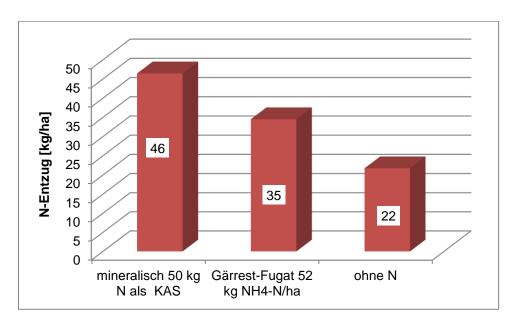


Abbildung 6: N-Entzug bei mineralischer und organischer Düngung zum ersten Grünlandschnitt im Vergleich zu ungedüngt