

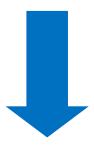
Klimawandel – Anpassung im Pflanzenbau

Gliederung

- Klimaprojektion für Sachsen
- Anpassungsnotwendigkeiten im Pflanzenbau
 - Fruchtfolge, Sortenwahl & Bestandesführung
 - Wasserhaushalt und Bodenschutz
 - Düngung & Nährstoffversorgung
 - Pflanzengesundheit
- Schlussfolgerungen

Klimaprojektion für Sachsen

- Mildere Winter und wärmere Sommer
 - -> Folgen: Verschiebung/Verkürzung Pflanzenwachstum, Ertragsreduktion durch Hitzestress, Humusabbau usw.
- Geringere Niederschläge im Frühjahr und Sommer
 - Folgen: negative klimatische Wasserbilanz, d. h. Verminderung des Bodenwasservorrats,
 - schlechtere Wasserversorgung von Pflanzenbeständen,
 - geringere und ungleichmäßigere Wasserführung von Flüssen usw.
- Intensitätszunahme bei Starkregenereignissen
 - -> Folgen: größere Niederschlagsmengen/Zeiteinheit,
 - potenziell mehr Wassererosion,
 - potenziell mehr (lokale) Hochwasserereignisse.

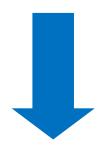

Klimawandel

Anpassungsstrategien im Pflanzenbau

Ziel -> Förderung der Widerstandskraft (Resilienz) des Ackerbaus gegenüber Klimawandelauswirkungen

Klimawandel -Anpassungsbedarf

Fruchtfolge, Sortenwahl & Bestandesführung


Fruchtfolge – Sortenwahl - Bestandesführung

- Vielgestaltigere Fruchtfolgen -> Risikostreuung angesichts extremerer Witterungsbedingungen, Krankheiten & Schädlinge.
- Diversität der Fruchtfolge -> betriebliche Risikoverteilung durch Wechsel von Sommer- & Winterkultur, Anbau Wintergerste > Winterweizen, Anbau von Grünroggen, Futtergräser & Luzerne, Sorghum ergänzend zu Mais.
- Sortenstrategie & Bestandesführung:
 - Anbau standortangepasster Sorten mit spezifischen Sorteneigenschaften: Toleranz gegenüber Hitze, Kälte, hohe Sonneneinstrahlung, Resistenz gegenüber Krankheiten & Schädlingen, effiziente Wasser- und Nährstoffnutzung & angepasstem Abreifeverhalten.
 - Anbau verschiedener Reifegruppen, Sorten mit unterschiedlichen Wurzelsystemen usw.
 - Anpassung Saatzeitpunkt, Aussaatmenge & Bestandesdichte.

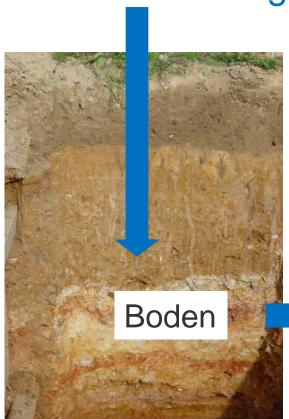
Klimawandel -Anpassungsbedarf

Wasserhaushalt und Bodenschutz

Synergieeffekte!

Wasserversorgung der Pflanzen

-> von entscheidender Bedeutung


Wasserversorgung von Pflanzen

-> erfolgt <u>nur</u> über den Boden -> Versickerung von Wasser in den Boden muss <u>ständig & umfassend</u> sichergestellt werden!

Niederschlag

Bodenwasser

Erfordernis Klimawandel

-> ganzjährig umfassende
Speicherung aller Niederschläge (insbesondere auch
von Starkregenereignissen!)
in Ackerböden im Jahresverlauf
und jahresübergreifend
für sicheres Pflanzenwachstum und Ertragsbildung

Vorsorge gegen ungleiche Niederschlagsverteilung sowie ausbleibende Niederschläge (-> z. B. Vorsommertrockenheit) im Jahresverlauf -> Wasserspeicherung unerlässlich!

Wasserspeichervermögen von Ackerböden

- 1 m³ Löß-Ackerboden im Sächsischen Lößhügelland: ca. 420 Liter Wasser.
- 1 m³ Ackerboden im Erzgebirge: ca. 50 – 100 Liter Wasser
- 1 m³ Ackerboden in Nordsachsen (sandige Böden): ca. 80 – 100 Liter Wasser

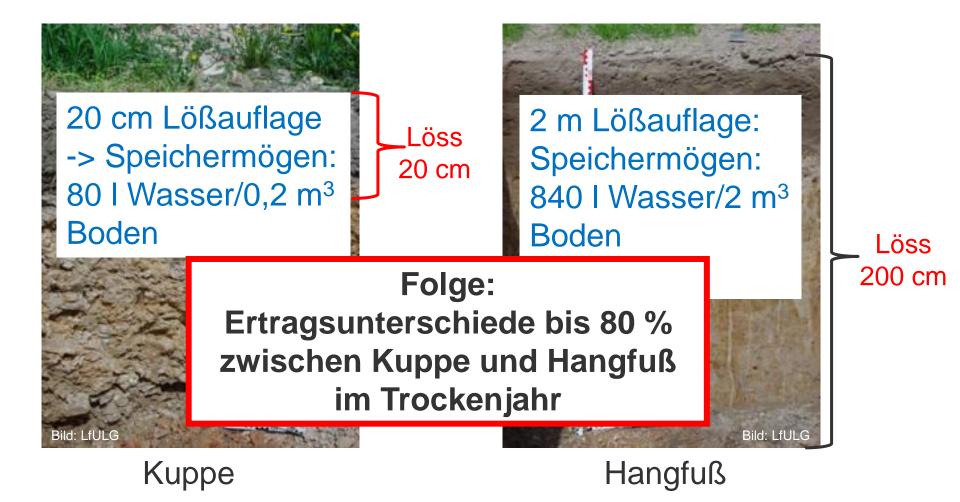
Lößboden > 200 cm mächtig

Wasserspeichervermögen von Ackerböden

- 1 m³ Löß-Ackerboden im Sächsischen Lößhügelland: ca. 420 Liter Wasser.
- 1 m³ Ackerboden im Erzgebirge: ca. 50 – 100 Liter Wasser
- 1 m³ Ackerboden in Nordsachsen (sandige Böden): ca. 80 – 100 Liter Wasser

Lößboden > 200 cm mächtig

Reduktion Wasserspeichervermögen des Bodens infolge Bodenverlust durch Wassererosion

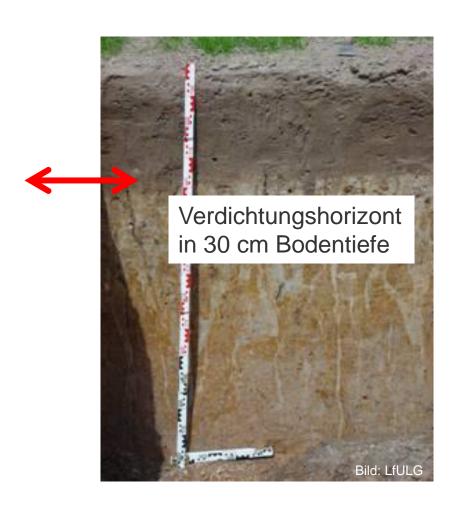

Kuppe

Hangfuß

(Methau, Sächsisches Lösshügelland)

Reduktion Wasserspeichervermögen des Bodens infolge Bodenverlust durch Wassererosion

(Methau, Sächsisches Lösshügelland)



Schadverdichtungen

LANDESAMT FÜR UMWELT, LANDWIRTSCHAFT UND GEOLOGIE Freistaat SACHSEN

-> gehemmte Infiltration & kein Tiefenwachstum der Wurzeln -> Nichtausnutzen des vorhandenen Bodenwasserspeichervorrats

Schadverdichtungen

LANDESAMT FÜR UMWELT,
LANDWIRTSCHAFT
UND GEOLOGIE

Freistaat
SACHSEN

-> gehemmte Infiltration & kein Tiefenwachstum der Wurzeln -> Nichtausnutzen des vorhandenen Bodenwasserspeichervorrats

Bodengefüge schützen!

Bodengefügeschutz sichert Wasserinfiltration und ermöglicht die umfassende Nutzung des vorhandenen Bodenwasserspeichers!

18 I 22.02.2019 I Dr. Walter Schmidt

Klimawandel -> Optimierung der

Wasserinfiltration auf Ackerflächen LANDESAMT FÜR UMWELT, LANDWIRTSCHAFT

Hauptursache gehemmter Wasserversickerung auf Ackerflächen -> Oberflächenverschlämmung durch Bodenaggregatzerfall mit der Folge von Wasserabfluss (und Wassererosion!) auf Ackerflächen

19 I 22.02.2019 I Dr. Walter Schmidt

Wendende Bearbeitung mit dem Pflug LANDESAMT FÜR UMWELT,

- -> hohe Eingriffsintensität in den Boden
- -> keine Bedeckung des Bodens mit Pflanzenresten
- -> feinkrümelige Bodenoberfläche nach Saatbettbereitung

-> infiltrationshemmende & erosionsfördernde Verschlämmung!

Wendende Bearbeitung mit dem Pflug LANDESAMT FÜR UMWELT,

LANDESAMT FÜR UMWELT,
LANDWIRTSCHAFT
UND GEOLOGIE

- -> hohe Eingriffsintensität in den Boden
- -> keine Bedeckung des Bodens mit Pflanzenresten
- -> feinkrümelige Bodenoberfläche nach Saatbettbereitung

-> <u>infiltrationshemmende</u> & erosionsfördernde Verschlämmung!

konservierenden Bodenbearbeitung & Direktsaat auf die Wasserversickerung

- Schutz der Bodenoberfläche durch Pflanzenreste
- Stabile, wenig verschlämmende Bodenstruktur durch höhere Krümelstabilität* (z. B. durch Regenwurmaktivität)
- Mehr unterbodenerschließende Grobporen durch <u>mehr</u> Regenwürmer bei pflugloser Bestellung

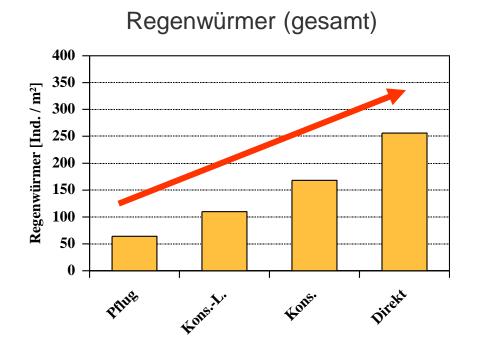
Infiltrationsfördernder & erosionsmindernder/-verhindernder

Bodenstrukturzustand

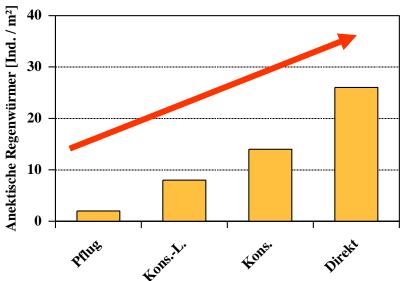
konservierenden Bodenbearbeitung & Direktsaat auf die Wasserversickerung

Schutz der Bodenoberfläche durch Pflanzenreste

Ctabila wania waraablammanda Dadanatruktur durah hahare


Voraussetzung: dauerhafter Pflugverzicht!

Mehr unterbodenerschließende Grobporen durch <u>mehr</u>
 Regenwürmer bei pflugloser Bestellung


Infiltrationsfördernder & erosionsmindernder/-verhindernder Bodenstrukturzustand

Regenwurmbesatz in Abhängigkeit von der Bodenbearbeitung (LfULG 2002)

Regenwürmer (tiefgrabende Arten)

Wirkungen von Regenwürmern

....sie erzeugen stabile Bodenkrümel

....sie erzeugen viele große Poren

Verbesserung der Wasserversickerung

Wirkungen von Regenwürmern

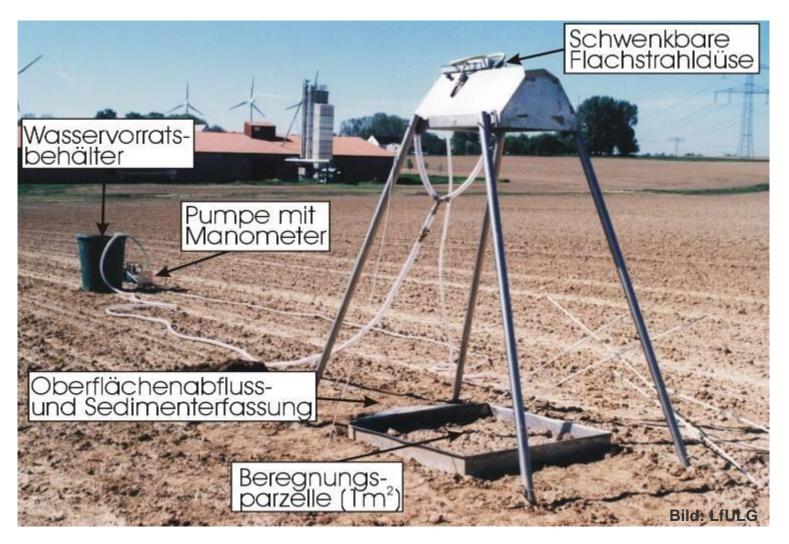
....sie erzeugen stabile Bodenkrümel

....sie erzeugen viele große Poren

Verbesserung der Wasserversickerung

Regenwurmgänge -> Durchporung von Verdichtungen -> Sicherstellung einer guten Wasserversickerung & Sicherung von Wurzelwachstum in tiefere Bodenschichten -> bessere Wasserversorgung von Pflanzen

LANDESAMT FÜR UMWELT, LANDWIRTSCHAFT UND GEOLOGIE



Wasserinfiltration in Ackerböden

rasche Versickerung in größere Bodentiefen durch Makroporen
(z. B. Regenwurmgänge) -> Durchfeuchtung des Unterbodens

Beregnungsversuche - Versuchsaufbau

Wasserinfiltration und Bodenabtrag auf gepflügter und dauerhaft nichtwendend bzw. konservierend bearbeiteter Ackerfläche (Sächsisches Lößhügelland, Regensimulationsversuch, Niederschlag: 38 mm in 20 Minuten):

Infiltrationsraten

Pflug: 55 % -> ~ 20 Liter/m²

Nichtwendend: 93 % -> ~ 35 Liter/m²

Bodenabtrag

Pflug: 246 g/m²

Konservierend: 36 g/m²

Wasserinfiltration und Bodenabtrag auf gepflügter und dauerhaft nichtwendend bzw. konservierend bearbeiteter Ackerfläche (Sächsisches Lößhügelland, Regensimulationsversuch, Niederschlag: 38 mm in 20 Minuten):

Infiltrationsraten

Pflug: 55 % -> ~ 20 Liter/m²

Nichtwendend: 93 % -> ~ 35 Liter/m²

Bodenabtrad

-> 30 mm Wasser in Boden -> ~ 10 Tage Überbrückung bei der Wasserversorgung von Pflanzen

Optimierung Wasserinfiltration und Bodenabtragsminderung

-> durch Streifenbearbeitung und Direktsaat

-> Infiltration: ~ 100 %*

-> Bodenabtrag:~ 3 g Boden/m2 *

* Beregnungsversuche mit 38 mm / 20 min, 3 Messwiederholungen)

Effiziente Wassernutzung auf Ackerflächen durch konservierende Bearbeitung:

Weniger unproduktiver Wasserverlust (=>Erosionsschutz!) Bild: LfULG LANDESAMT FÜR UMWELT,

LANDWIRTSCHAFT

UND GEOLOGIE

Mulchauflage

Minderung der unproduktiven Verdunstung!

Anpassung Klimawandel

Nachhaltiges
Bodenkulturmanagement
auf Ackerflächen!

Nachhaltige bodenschonende Bodenkultur auf Ackerflächen:

- -> gute Krumen- und Gefügestrukturierung
- -> gute Wasserversickerung und sicheres Wurzeltiefenwachstum

Wassersparende Maßnahmen im Ackerbau

Verzicht auf wasserzehrende intensive Saatbettbereitung im Herbst -> Aussaat Zwischen- bzw. Hauptfrucht mit Mulchsaat-/Striptilltechnik in nicht bzw. nur flach bearbeiteten "restfeuchten" Acker

Wassersparende Maßnahmen im Ackerbau

Verzicht auf wasserzehrende intensive Saatbettbereitung im Herbst -> Aussaat Zwischen- bzw. Hauptfrucht mit Mulchsaat-/Striptilltechnik in nicht bzw. nur flach bearbeiteten "restfeuchten" Acker

Klimawandel -Anpassungsbedarf

Düngung & Nährstoffversorgung

Düngung & Nährstoffversorgung andesamt für umwelt,

- Optimale Grundnährstoffversorgung (P, K, Mg, Ca usw.).
- Anpassung der kulturartspezifischen N-Düngung durch
 - N-Düngebedarfsermittlung mit Beratungsprogrammen (-> BESyD) & Pflanzenanalysen (NO₃-Schnelltest, Sensor) auf Grundlage realistischer Ertragserwartungen.
 - Optimierung Düngungszeitpunkte, -mengen & –formen entsprechend dem jahres- & witterungsabhängigen Bedarf (mit Nutzung von Wetterprognosen!).
 - Verbesserte Düngemittelapplikation -> emissionsarme Ausbringtechnik (Injektionsdüngung, Unterfußdüngung), Düngergabenzusammenfassung (2. & 3. N-Gabe) & Applikation stabilisierter N-Dünger.
- Teilschlagspezifische Düngung auf heterogenen Flächen zur Verbesserung von Ertrag, Qualität, Nährstoff- & Wassernutzung.

Klimawandel -Anpassungsbedarf

Pflanzengesundheit

<u>Pflanzengesundheit –</u> <u>Folgen des Klimawandels</u>

- Veränderung des Spektrums und des Umfangs an Unkräutern, tierischen & pilzlichen Schaderregern sowie Pflanzenkrankheiten (z. B. durch wärmeliebende Insekten als Vektoren für Virosen).
- Auftreten neuer invasiver Schaderreger.
- Höhere Generationenfolge bei Schädlingen -> größere Schäden
- Änderung/Verkürzung von Infektionszeiten bei Pilzinfektionen -> erhöhter Bonituraufwand und kurzfristigere Behandlungserfordernis.
- Witterungsbedingt Pflanzenschutzmittelanwendungen mit Wirkungseinschränkungen (z. B. schlechte Bodenherbizidwirkung bei trockenen Böden).

<u>Pflanzengesundheit –</u> <u>Anpassungserfordernisse</u>

- Vorbeugende Maßnahmen des integrierten und witterungsangepassten Pflanzenschutzes:
 - Erweiterte Fruchtfolgen -> größere Risikostreuung & Vorsorge gegen (neue) Krankheiten, Schadinsekten & schwer bekämpfbare Unkräuter & -gräser.
 - Anbau standortangepasster & widerstandsfähiger Sorten.
 - Weiterentwicklung von Applikationstechniken und Wirkstoffen.
 - Angepasste Anbauverfahren (geänderte Saat-/Pflanztermine, Aussaatstärken bzw. Pflanzendichten).
- Anpassung/Entwicklung witterungsgestützter Prognosemodelle.
- Anpassung bestehender wirtschaftlicher Schadens- & Bekämpfungsschwellen.
- Weiterentwicklung der Applikationstechnik und PSM-Formulierung für sichere Wirksamkeit bei Trockenheit & Wärme.

Schlussfolgerungen

Klimawandelanpassung im Pflanzenbau -> Förderung der Widerstandskraft des Ackerbaus gegenüber den damit verbundenen Auswirkungen durch:

- ✓ Optimiertes Ackerbodenkulturmanagement durch dauerhaft konservierende Bodenbearbeitung/Direktsaat mit Gefügeschutz -> wirksamste Strategie für effiziente Wassernutzung & Erosionsschutz auf Ackerflächen -> Erhalt des Wasserspeichers Boden für Trockenperioden.
- ✓ Erweiterte Fruchtfolgen & standortangepasste Sortenwahl -> größere Risikostreuung & Vorsorge gegen neue Krankheiten, Schadinsekten & Unkräuter.
- ✓ Optimale Grundnährstoffversorgung, N-Düngebedarfsermittlung mit Beratungsprogrammen (mit realistischen Ertragszielen!), verbesserte Düngemittelapplikation (<-> trockene Bodenbedingungen!) mit emissionsarmer Ausbringtechnik & teilschlagspezifische, sensorgestützte Düngung auf heterogenen Flächen mit angepassten Bestandesdichten.
- ✓ Bewässerung zu ausgewählten Kulturen mit wassersparender Technik unter Beachtung des Wasserdargebotes und der Ökonomie.

