B 57 W 106 916 2001 – 2011

Nährstoffempfehlungen Prüfung von Verfahren der N-Bedarfsermittlung bei Winterweizen

N-Düngung Winterweizen

1. Versuchsfrage:

Auf der Grundlage einer differenzierten N-Versorgung sind Verfahren der N-Bedarfsermittlung (Nitrat-Schnelltest, N-Tester, N-Sensoren, N-Simulation) während des Schossens von Winterweizen zu prüfen.

2. Prüffaktoren:

Faktor A: N-Düngung Versuchsorte Landkreis Prod.gebiet

Stufe:16NossenMeißenLöForchheimErzgebirgskreisVPommritzBautzenLö

3. Versuchsanlage:

Lateinisches Rechteck mit 4 Wiederholungen

4. Auswertbarkeit/Präzision:

Die Präzision der Versuche lässt eine Auswertung zu.

5. Versuchsergebnisse:

PG	N-Düngung			Forchheim				Nossen				Pommritz						
	1. Gabe EC 23	2. Gabe EC 32	3. Gabe EC 55	N gesamt	Korn- Ertrag	RP	N- Entzug Korn	N- Saldo Korn	N gesamt	Korn- Ertrag	RP	N- Entzug Korn	N- Saldo Korn	N gesamt	Korn- Ertrag	RP	N- Entzug Korn	N- Saldo Korn
		kg N/ha		kg/ha	dt/ha	%	kg/ha	kg/ha	kg/ha	dt/ha	%	kg/ha	kg/ha	kg/ha	dt/ha	%	kg/ha	kg/ha
1	0	0	0	0	54,6	10,9	90	-71	0	57,1	9,8	85	-64	0	76,3	10,8	125	-95
2	redu- ziertes Niveau	0	60	88	72,0	13,1	142	-45	84	76,4	12,5	145	-44	81	88,7	12,9	173	-69
3		30	60	118	80,2	12,9	156	-34	114	85,2	12,6	162	-35	111	91,9	13,3	183	-54
4		60	60	148	83,8	13,2	166	-19	144	92,0	13,1	182	-27	141	92,1	13,6	188	-34
5		90	60	178	85,4	13,3	172	-2	174	93,8	13,4	189	-9	171	92,3	14,2	196	-17
6	mitt- leres Niveau	0	60	118	80,2	13,0	157	-35	113	84,7	12,7	162	-35	111	90,7	13,3	181	-51
7		30	60	148	84,1	13,2	167	-21	143	90,9	12,9	177	-22	141	92,0	13,6	187	-34
8		60	60	178	85,3	13,3	171	-2	173	94,1	13,9	197	-18	171	92,0	14,0	193	-15
9		90	60	208	86,4	13,6	177	16	203	95,5	13,9	200	5	201	91,2	14,4	197	7
10		0	60	148	83,1	13,1	164	-17	143	90,7	13,0	178	-25	141	92,0	13,7	188	-33
11	er- höhtes Niveau	30	60	178	85,0	13,3	170	-1	173	93,4	13,4	188	-10	171	92,0	14,0	193	-14
12		60	60	208	85,7	13,6	175	18	203	95,1	13,8	199	4	201	91,5	14,2	195	8
13		90	60	238	85,1	13,6	175	42	233	95,1	14,2	203	24	231	91,3	14,5	199	28
14	BEFU	NST	NST	144	85,4	13,0	168	-20	154	93,5	13,1	185	-28	134	92,4	13,7	190	-44
15	BEFU	N- Tester	N- Tester	200	86,3	13,5	176	15	201	95,3	13,7	198	1	165	94,0	13,9	197	-26
16	N- Simu- lation	N- Simu- lation	N- Simu lation	169	85,2	13,3	171	-9	174	93,7	13,4	190	-9	145	92,5	13,8	191	-34
		GD	5 % gepoolt		1,0					1,6					1,0			

6. Schlussfolgerungen/Handlungsbedarf:

- Im Untersuchungszeitraum erwies sich im Hinblick auf den Kornertrag eine mittlere Andüngung in Forchheim und Nossen als günstig. Zur Sicherung ausreichend hoher Rohproteingehalte waren N-Gaben zum Schossen von 60 90 kg/ha erforderlich.
- Der Standort Pommritz ist durch eine starke N-Nachlieferung aus Bodenquellen gekennzeichnet, was den N-Düngebedarf reduziert. Mit einem N-Gesamtaufwand von 110 bis 140 kg N/ha werden hier hohe Erträge und Rohproteingehalte erzielt.
- Hohe N-Gaben zu Vegetationsbeginn führten vor allem in Pommritz zu einem ungünstigen Bestandesaufbau und letztlich zu Mindererträgen in Verbindung mit einer schlechten N-Verwertung.
- Die geprüften Verfahren der N-Bedarfsermittlung (Nitrattest, N-Tester, N-Simulation) bewirkten ein hohes Ertragsniveau. Die Rohproteingehalte erreichten bei Nutzung des N-Testers bzw. der N-Simulation im Vergleich zum Nitrattest etwas höhere Werte, allerdings bei teilweise deutlich höherem N-Einsatz.

Versuchsdurchführung: LfULG	Themenverantw.:	Abt. 7 - Pflanzliche Erzeugung	Erntejahr
ArGr Feldversuche	Referat:	71 Pflanzenbau, Nachwachsende Rohstoffe	
Ref. 76, Frau Trapp	Bearbeiter:	Herr Dr. habil. E. Albert	2001 – 2010