120 917 B 53/2 2009 - 2013

Biomasseabhängige N-Düngung zur umweltorientierten Düngebedarfsermittlung

N-Düngebedarfsermittlung **Winterraps**

1. Versuchsfrage:

Optimierung der N-Düngung zu Winterraps unter Berücksichtigung von spektralen Reflexionsmessungen zur Quantifizierung der biomasseabhängigen N-Aufnahme.

2. Prüffaktoren:

		Versuchsorte	Landkreis	Prod.gebiet
Faktor A:	Aussaattermin	Baruth	Bautzen	D
Faktor B:	N-Herbstdüngung	Forchheim	Erzgebirgskreis	V
Faktor C:	N-Düngung im Frühjahr	Nossen	Meißen	Lö
Stufen:	2/2/5	Pommritz	Bautzen	Lö

3. Versuchsanlage:

Spaltanlage mit je 4 Wiederholungen

4. Auswertbarkeit/Präzision:

Die Präzision der Versuche lässt eine Auswertung zu.

5. Versuchsergebnisse:

PG	Aus-	N-Düngung in kg/ha			Ertrag dt/ha bei 91 % TS			Ölertrag (dt/ha)				
	saatzeit	Herbst	Vegetations- beginn	Streckungs- wachstum	Baruth	Forchheim	Nossen	Pommritz	Baruth	Forchheim	Nossen	Pommritz
1	normal	ohne	0	0	47,5	38,1	32,9	40,6	22,4	16,8	15,2	18,7
2	normal	ohne	0	100	54,3	55,9	47,5	46,7	23,6	20,7	21,1	20,6
3	normal	ohne	50	100	57,8	60,5	54,7	50,2	25,0	22,1	24,5	22,0
4	normal	ohne	100	100	56,4	58,9	54,8	50,1	24,4	23,1	24,2	21,7
5	normal	ohne	150	100	55,0	62,4	61,3	51,6	23,4	23,2	26,6	21,9
6	normal	50	0	0	47,2	46,9	41,6	41,1	22,4	18,3	19,4	18,7
7	normal	50	0	100	54,0	58,6	51,8	48,2	23,6	21,7	23,4	21,2
8	normal	50	50	100	53,9	61,2	58,7	49,3	23,4	22,3	26,0	21,4
9	normal	50	100	100	55,4	61,9	62,0	51,8	23,7	22,2	27,6	22,5
10	normal	50	150	100	56,0	58,9	61,3	51,1	23,9	19,6	26,3	21,7
11	spät	ohne	0	0	39,3	31,8	36,8	39,3	18,5	15,4	16,9	18,1
12	spät	ohne	0	100	48,7	49,8	53,9	47,1	20,7	20,7	23,3	20,9
13	spät	ohne	50	100	50,2	57,2	53,6	50,3	21,6	23,2	23,6	22,2
14	spät	ohne	100	100	51,6	59,1	57,5	50,3	22,4	20,5	25,4	21,9
15	spät	ohne	150	100	52,2	62,4	58,1	49,8	22,2	23,1	25,1	21,1
16	spät	50	0	0	38,9	36,3	43,1	40,8	18,4	18,5	19,7	19,0
17	spät	50	0	100	49,1	50,9	52,4	49,4	21,7	21,3	23,2	22,0
18	spät	50	50	100	51,3	57,4	57,6	52,0	22,6	22,8	25,5	22,5
19	spät	50	100	100	53,3	58,1	60,7	52,3	23,0	23,1	26,6	22,3
20	spät	50	150	100	51,8	60,9	62,6	51,5	22,3	20,7	26,7	21,7
				GD _{5%} (A)	2,0	1,8	2,0	2,4				
				GD 5% (B)	1,6	2,5	0,7	1,3				
			_	GD _{5%} (C)	1,7	3,1	1,9	2,0		-		

6. Schlussfolgerungen/Handlungsbedarf:

- Wie im Jahr zuvor wurde auf allen Standorten ein sehr hohes Ertragsniveau erzielt. Der hohe Grundertrag in Baruth resultiert aus einer sehr kräftigen Vorwinterentwicklung verbunden mit N-Aufnahmen von ~200 kg/ha bei optimaler und ~100 kg/ha bei verspäteter Aussaat.
- Während auf dem diluvialen sowie dem Verwitterungsstandort der Aussaattermin einen deutlichen Einfluss auf den Ertrag hatte, war das auf den Lö-Standorten nicht der Fall.
- Das Wiegeverfahren gab die Substanzbildung und die damit einhergehende N-Aufnahme zum jeweiligen Probenahmetermin gut wieder. Die an den jeweiligen Standorten durchgeführten Reflexionsmessungen und daraus abgeleiteten Bestandesindices standen in enger Beziehung dazu. Sie waren jedoch sehr standortbezogen.
- Die optimale N-Düngermenge wurde von der Vorwinterentwicklung und dem Standort bestimmt. Der höchste Ölertrag wurde mit 100 bis 200 kg N/ha erzielt. Entscheidend waren dabei der jeweilige Standort und der vor dem Winter im Bestand eingebundene Stickstoff.

Versuchsdurchführung: LfULG	Themenverantw.:	Abt. 7 – Pflanzliche Erzeugung	Erntejahr
ArGr Feldversuche	Referat:	71 Pflanzenbau, Nachwachsende Rohstoffe	
Ref. 76, Frau Trapp	Bearbeiter:	Herr Dr. habil. Albert, Herr Dr. Schliephake	2010