

LfULG- und TLL-Fachveranstaltung "50 Jahre Dauerversuche in Methau, Spröda und Bad Salzungen" Nossen, 08. Dezember 2015

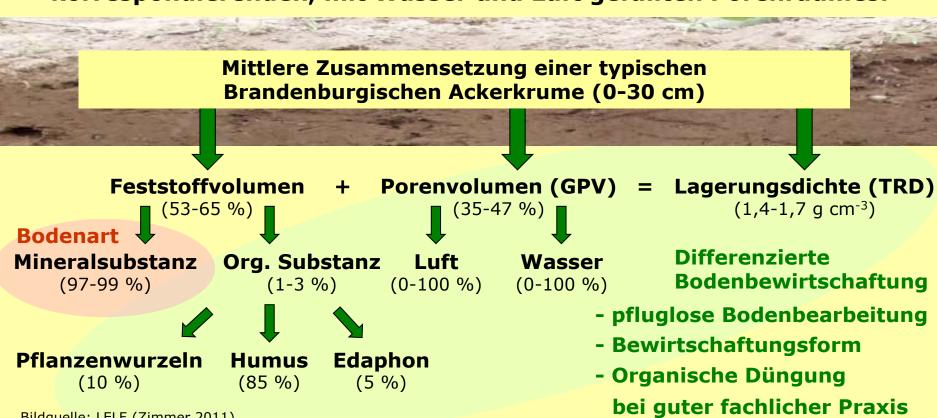
Bodenstruktur unter differenzierter Bewirtschaftung Ergebnisse aus Dauerversuchen

Jörg Zimmer

- LELF Brandenburg -

unter Mitwirkung von

- W. Schmidt, H. Götz, C. Wiesner & E. Ullmann
 LfULG Sachsen BfUL Sachsen BfUL Sachsen -
- B. Dittmann, Th. Bergner, H. Blum, D. Schulze, N. Starke & F. Krüger
 LELF Brandenburg -
 - D. Kühn, A. Bauriegel
 LBGR Brandenburg Humboldt-Universität zu Berlin -



Zum Verständnis der Bodenstruktur

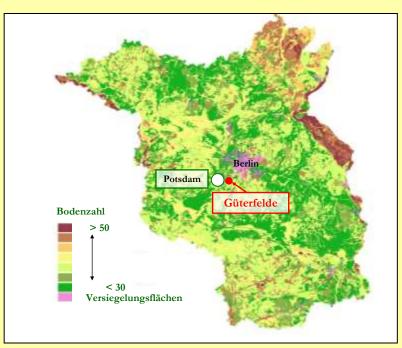
Bodenstruktur = Bodengefüge

ist die räumliche Anordnung der festen Bodenbestandteile und des korrespondierenden, mit Wasser und Luft gefüllten Porenraumes.

Bildquelle: LELF (Zimmer 2011)

Vortragsgliederung

Einleitung



- Versuchsstandort Güterfelde/Brandenburg
- Versuchscharakteristik
- Bodenstrukturmessungen
- Ergebnisse
- Fazit

Standortcharakteristik Güterfelde

Standorteignung der Böden im Land Brandenburg Bildquelle: Landesamt für Bergbau, Geologie und Rohstoffe des Landes Brandenburg (2007)

geologische Einordnung:

Landschaftsraum der Mittelbrandenburgischen Plateaus und Niederungen

Klima: Ostdeutsches Binnenlandklima

Boden-Klima-Raum:

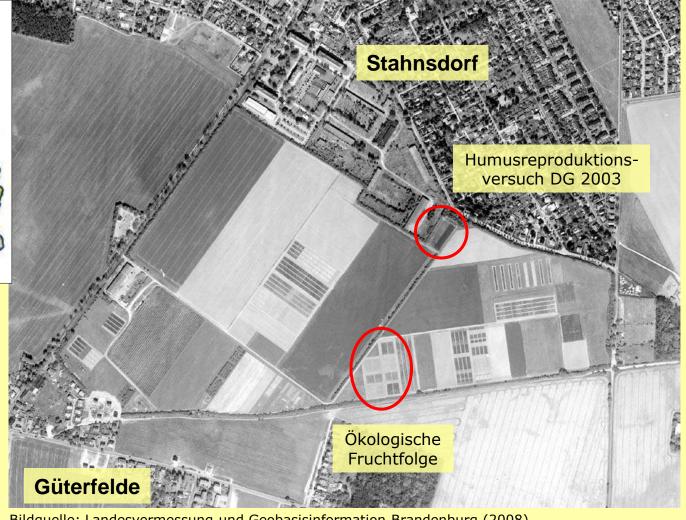
Trocken-warme diluviale Böden des ostdeutschen Tieflandes

Höhenlage: 41 m NN

Grundwasserstand: > 20 m

mittlerer Jahresniederschlag: 540 mm

mittlere Jahrestemperatur: 9,2 °C



Versuchsstation Güterfelde

Bildquelle: LELF, Datensammlung Betriebsplanung (2015)

Bildquelle: Landesvermessung und Geobasisinformation Brandenburg (2008)

Mittlere Bodeneigenschaften in der Ackerkrume

242 360	Merkmal	Öko-FF (LBGR 2011)	DG 2003 (LBGR 2004)	242 719			
> 1	Bodenform		Ackerbraunerde-Fahlerde aus Geschiebedecksand				
	Bodenschätzung	SI3D	SI4D				
	VDLUFA-Bodengruppe	1 - Sand (Ss, AZ 23-31)	1 - Sand (Su2, AZ 38/36)				
	Ton/Schluff/Sand (%)	3 / 6 / 91	4 / 18 / 78				
	C _{org.} /N _{org.} (%) ¹	0,60 / 0,05	0,63 / 0,05				
	pH-Wert ¹	6,0	4,9				
	P_{DL}/K_{DL}/Mg_{CaCl2} (mg 100 g ⁻¹) ¹	8,5 / 6,0 / 7,9	5,2 / 5,5 / 1,8				
	Lagerungsdichte (g cm ⁻³)	1,58	1,62	1 -			
La service de la constante de	KAK (cmol _c /kg)	4,4	5,5				

Standortrepräsentanz BG 1: ca. 45 % der Ackerfläche im Land Brandenburg

Bildquellen: Landesamt für Bergbau, Geologie und Rohstoffe des Landes Brandenburg (2004, 2011)

Vortragsgliederung

- Einleitung
- Versuchsstandort Güterfelde/Brandenburg

- Versuchscharakteristik
- Bodenstrukturmessungen
- Ergebnisse
- Fazit

Ökologische Fruchtfolge & Humusreproduktionsversuch Güterfelde - Kurzcharakteristik -

Merkmal	Öko-FF	DG 2003				
Versuchsbeginn	1995 (Honermeier)	2003 (Zimmer)				
Primäre Versuchsfrage	Ermittlung des Ertragsniveaus im viehlosen und viehhaltenden Öko-Landbau bei BB mit und ohne Pflug	Ermittlung der Humifizierungs- leistung von Getreidestroh und Stalldung mit/ohne Mineral-N- Einsatz bei pflugloser BB				
Sekundäre Versuchsfrage	Auswirkung der Bewirtscha	Auswirkung der Bewirtschaftung auf die Bodenstruktur				
Versuchsanlage	2-faktorielle Blockanlage mit 4 Wiederholungen	zwei 1-faktorielle Blockanlagen mit 4 Wiederholungen				
Prüffaktor	A: Bodenbearbeitung - wendend mit Pflug - pfluglos B: Wirtschaftsform - viehhaltend (0,7 GV ha ⁻¹) - viehlos	A: Organische Düngung - ohne - 30 dt ha ⁻¹ a ⁻¹ Stroh-TM - 20 dt ha ⁻¹ a ⁻¹ Dung-TM mit und ohne Mineral-N				
Fruchtfolge	KleegrKartWR-LupTritSM-WR (+U) (jede Kultur steht jährlich im Feld, 3 x Winterzwischenfrucht)	WW-TritWR. (jährlicher Kulturwechsel)				

Ökologische Fruchtfolge & Humusreproduktionsversuch Güterfelde - Kurzcharakteristik -

Bildquellen: LELF (Zimmer 2006, Dittmann 2009)

Vortragsgliederung

- Einleitung
- Versuchsstandort Güterfelde/Brandenburg
- Versuchscharakteristik

- Bodenstrukturmessungen
- Ergebnisse
- Fazit

Messung des Boden-Eindringwiderstandes am Standort Güterfelde

Bildquellen: LELF (Zimmer 2008)

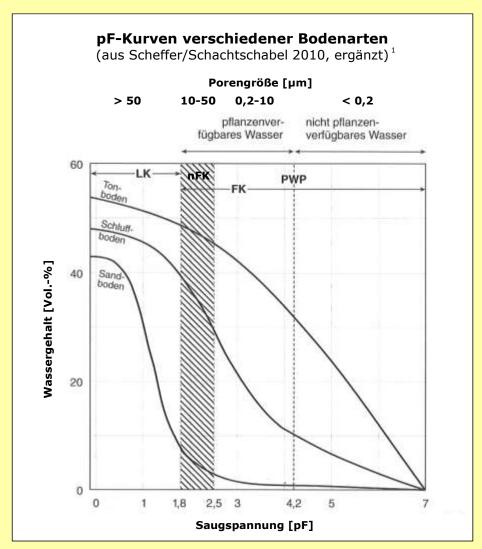
- Eijkelkamp-Penetrologger (Eindringwiderstand in MPa)
- optimale Bodenfeuchte (Wassersättigung, z.B. zeitiges Frühjahr)
- gleichmäßige Eindringgeschwindigkeit
- 10 Messungen je Parzelle

Stechzylinderbeprobung am Standort Güterfelde

- Bestimmung der Lagerungsdichte (TRD, DIN 19683 Bl. 12)
- Bestimmung von Gesamt-Porenvolumen (GPV), Luftkapazität (LK) und nutzbarer Feldkapazität (nFK)

Bildquellen: LELF (Zimmer 2009)

Drucktopfanlage des LfULG in Nossen


Bildquelle: Schmidt (2012)

Luftkapazität (LK)

- Saugspannung: 0-1,8 pF
- **Grobporen > 50 μm**(Schnell absinkendes Sickerwasser)

Nutzbare Feldkapazität (nFK)

- Saugspannung: 1,8-2,4 pF
- Grobe Mittelporen 10-50 μm (Nutzbares Sickerwasser)

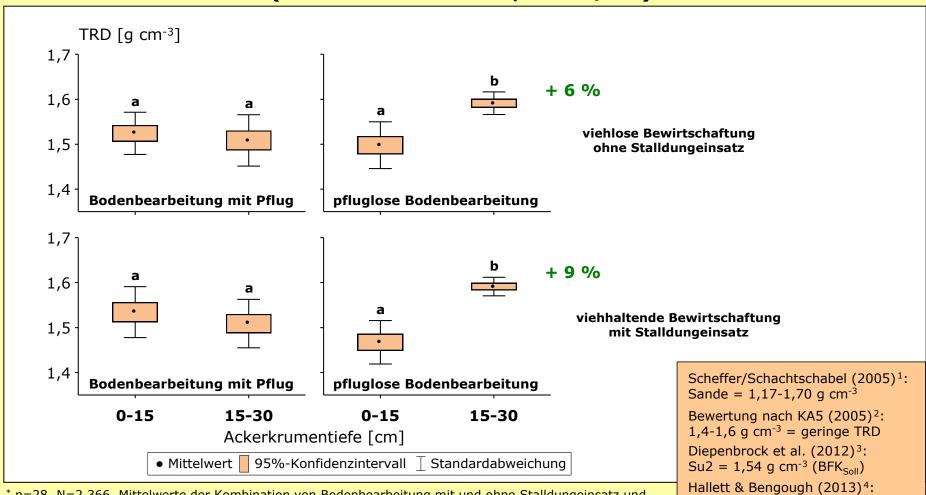
Vortragsgliederung

- Einleitung
- Bodenstrukturmessungen im Feldversuch
- Versuchsstandort Güterfelde/Brandenburg
- Versuchscharakteristik

- Ergebnisse
- Fazit

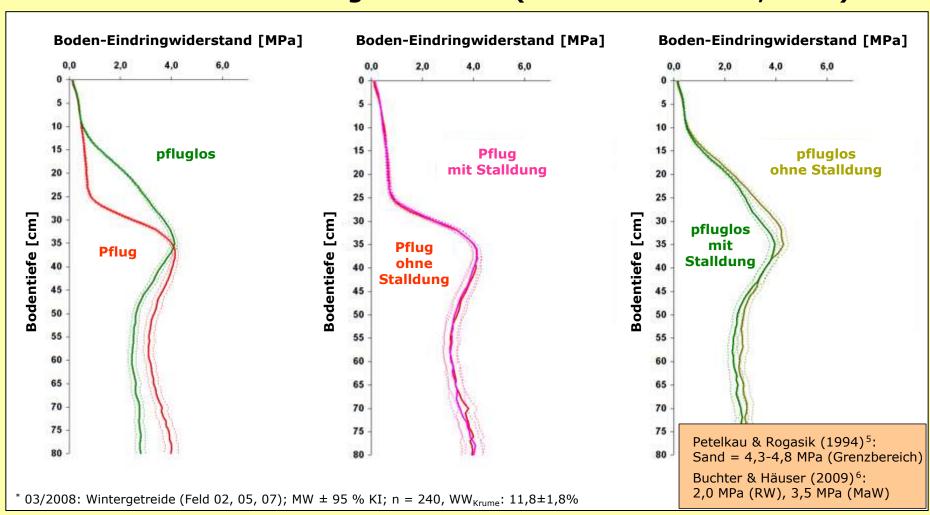
Ökologische Fruchtfolge Güterfelde - Ertragsleistung 1998-2009 (dt ha⁻¹ FM)* -

Fruchtart	Bezugs-	Bodenbea	arbeitung	Wirtsch	aftsform	Mittel
	basis	wendend	nicht wendend	viehlos	vieh- haltend	
Kleegras	ТМ	74,6 a	79,8b	76,0 A	78,4 A	77,2
		,	,	•	,	
Kartoffel	FM	258,4 a	258,2 a	240,2 A	276,3 B	258,3
Winterroggen	86% TM	29,4 b	27,0 a	25,0 A	31,4 B	28,2
Lupine**	86% TM	12,8 b	12,1 a	12,2 A	12,7 A	12,5
Wintertriticale	86% TM	32,8 b	28,5 a	27,7 A	33,6 B	30,7
Silomais	ТМ	90,1 b	85,5 a	80,6 A	95,0 B	87,8
		00/20	00,0 0	30,011	20,02	07,0
Winterroggen +US	86% TM	20,0 b	16,9 a	16,1 A	20,8 B	18,5


^{*} Datenbasis: Parzellenwerte der Anbaujahre, adjustierte Mittelwerte der Bodenbearbeitung- bzw. Bewirtschaftungsvarianten einer Kulturart mit gleichen kleinen oder großen Buchstaben unterscheiden sich im LSD-Test nicht signifikant (a ≤ 0,05)

^{**} Gelbe Lupine 1998-2000, Blaue Lupine 2001-2009

Auswirkungen von Bodenbearbeitung und Stalldungeinsatz auf die Bodenlagerungsdichte in der Ackerkrume* (Öko-FF Güterfelde, 2009/10)


^{*} n=28, N=2.366, Mittelwerte der Kombination von Bodenbearbeitung mit und ohne Stalldungeinsatz und Ackerkrumentiefe mit gleichen Buchstaben unterscheiden sich im LSD-Test nicht signifikant ($\alpha \le 0.05$)

Sandböden = 1,61 g cm⁻³

Auswirkungen von Bodenbearbeitung und Stalldungeinsatz auf den Boden-Eindringwiderstand (Öko-FF Güterfelde, 2008)*

Auswirkungen von Bodenbearbeitung und Stalldungeinsatz auf ausgewählte Bodenstrukturmerkmale in der Ackerkrume* (Öko-FF Güterfelde, 2009/10)

Merkmal	Ackerkrumen- tiefe	Kombination Bodenbearbeitung und Stalldungeinsatz mit Pflug pfluglos						
			ohne St	mit Stalldung				
	[cm]	Kleegras	Kleegras Triticale Kleegras Triticale				Triticale	
GPV	0 - 15	45,0°	43,5 ^a	44,8 ^a	46,3 ^b	43,8 ª	47,0 ^b	
	15 - 30	45,7 ^b	44,2 ^b	40,2 ^a	38,3 ª	39,6 ª	39,0 ª	

^{*} n=4, N=480, Mittelwerte der Bewirtschaftungsvarianten je Feld und Ackerkrumentiefe mit gleichen Buchstaben unterscheiden sich im LSD-Test nicht signifikant ($\alpha \le 0.05$), siehe auch Schmidt et. al (2012)⁷

Bewertung nach KA5 (2005)²:

36-38 Vol.% = geringes GPV

38-46 Vol.% = mittleres GPV

46-54 Vol.% = hohes GPV

Auswirkungen von Bodenbearbeitung und Stalldungeinsatz auf ausgewählte Bodenstrukturmerkmale in der Ackerkrume* (Öko-FF Güterfelde, 2009/10)

Merkmal	Ackerkrumen- tiefe	Kombination Bodenbearbeitung und Stalldungeinsatz mit Pflug pfluglos					
			ohne St	mit Stalldung			
	[cm]	Kleegras	Triticale	Kleegras	Triticale	Kleegras	Triticale
GPV	0 - 15	45,0 ^a	43,5 ^a	44,8 ^a	46,3 b	43,8 ^a	47,0 b
	15 - 30	45,7 b	44,2 b	40,2 a	38,3 ^a	39,6 a	39,0 ^a
LK	0 - 15	25,8 ^b	28,1 ^a	25,6 ^b	29,3 ª	22,6 ^a	30,1 ^a
	15 - 30	27,6 ^b	28,5 ^b	21,6 ^a	20,7 ^a	20,7 ^a	21,5 ^a

^{*} n=4, N=480, Mittelwerte der Bewirtschaftungsvarianten je Feld und Ackerkrumentiefe mit gleichen Buchstaben unterscheiden sich im LSD-Test nicht signifikant ($\alpha \le 0.05$), siehe auch Schmidt et. al (2012)⁷

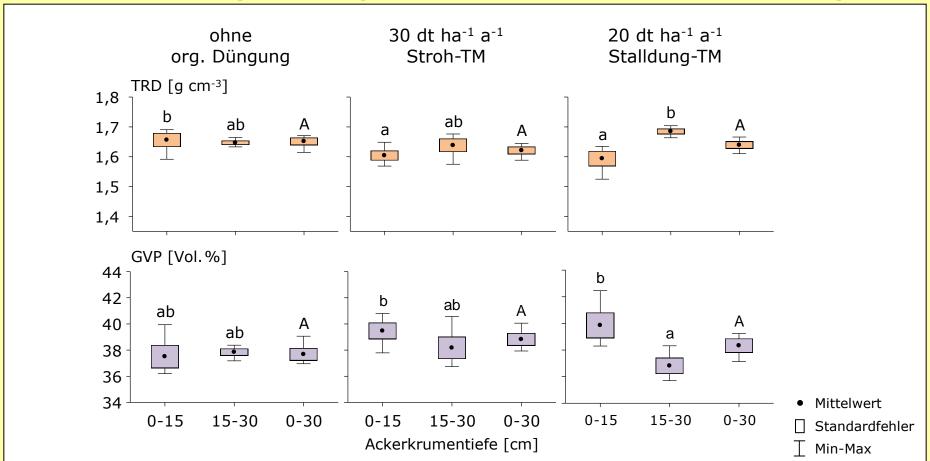
Bewertung nach KA5 (2005)²: 13-26 Vol.% = hohe LK > 26 Vol.% = sehr hohe LK

Auswirkungen von Bodenbearbeitung und Stalldungeinsatz auf ausgewählte Bodenstrukturmerkmale in der Ackerkrume* (Öko-FF Güterfelde, 2009/10)

Merkmal	Ackerkrumen- tiefe	Kombi mit I		denbearbe	eitung und Stalldungeinsatz pfluglos			
			ohne St	alldung	mit Stalldung			
	[cm]	Kleegras	Triticale	Kleegras	Triticale	Kleegras	Triticale	
GPV	0 - 15	45,0 ^a	43,5 ^a	44,8 ^a	46,3 ^b	43,8 ^a	47,0 ^b	
	15 - 30	45,7	440b	VAE (200E)	8,3 a	39,6 ^a	39,0 ^a	
LK	0 - 15	6-1	4 Vol.% = g	n KA5 (2005) eringe nFK mittlere nFK)4:	22,6 ^a	30,1 a	
	15 - 30	27,6 b	28,5 b	21,6 a	20,7 ^a	20,7 ^a	21,5 ^a	
nFK	0 - 15	13,9 ª	12,9 ª	13,7 a	13,9 ^a	16,3 b	13,4 ª	
	15 - 30	14,2 ^a	13,2 ª	13,9 ^a	14,9 ^b	13,3 ^a	14,6 ^b	

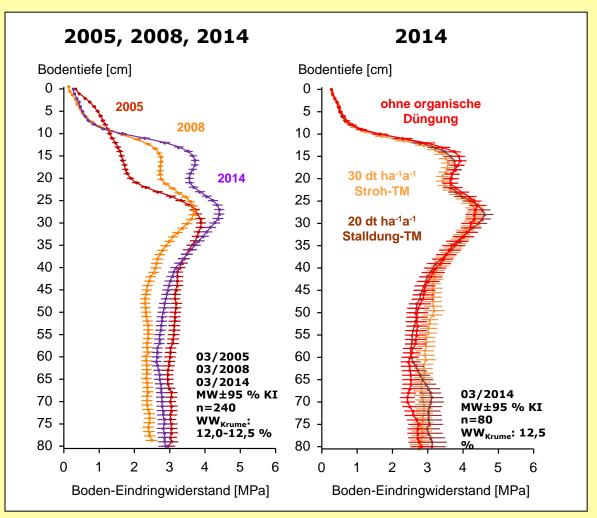
^{*} n=4, N=480, Mittelwerte der Bewirtschaftungsvarianten je Feld und Ackerkrumentiefe mit gleichen Buchstaben unterscheiden sich im LSD-Test nicht signifikant ($\alpha \le 0.05$), siehe auch Schmidt et. al (2012)⁷

Humusreproduktionsversuch Güterfelde - Ertragsleistung 2004-2013 (dt ha⁻¹ FM bei 86 % TS)* -


Organische	Winter	rweizen Triti		cale	Winterroggen		Fruchtfolge
Düngung	Korn	Stroh	Korn	Stroh	Korn	Stroh	
		[dt l	<u>าล⁻¹a⁻¹ FM</u>	bei 86 %		[dt ha ⁻¹ a ⁻¹ TM]	
ohne	27,3 b	23,5 с	35,0 b	25,7 a	47,7 b	35,1 a	54,5 b
Getreidestroh (30 dt ha ⁻¹ TM)	26,7 b	21,1 b	34,6 b	25,6 a	47,3 b	34,0 a	52,9 b
Stalldung (20 dt ha ⁻¹ TM)	21,0 a	18,3 a	30,1 a	23,0 a	39,6 a	31,8 a	45,6 a
GD _{5%}	3,9	2,1	2,4	3,7	3,7	5,3	3,2

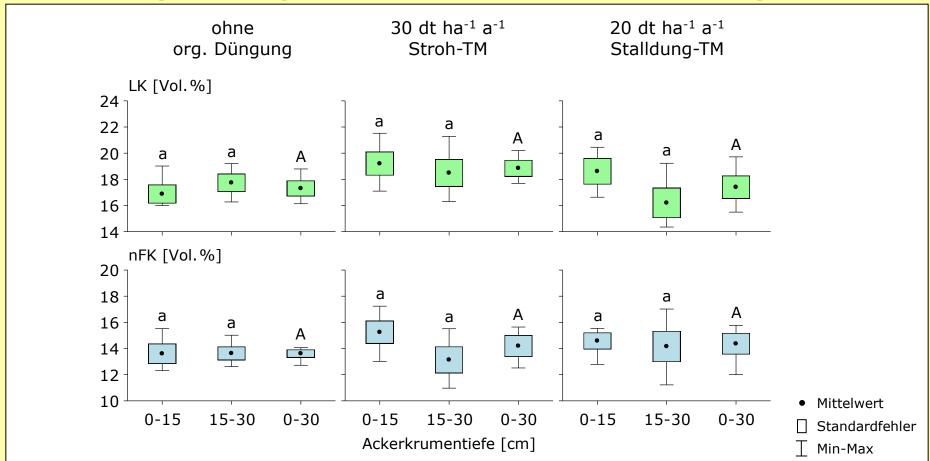
^{*} Datenbasis: Parzellenwerte der Anbaujahre, adjustierte Mittelwerte der Düngungsvarianten einer Spalte mit gleichen Buchstaben unterscheiden sich im LSD-Test nicht signifikant ($\alpha \le 0.05$)

Auswirkungen von organischer Düngung bei pflugloser Bodenbearbeitung auf die Lagerungsdichte und das Gesamt-Porenvolumen in der Ackerkrume (Humusreproduktionsversuch Güterfelde, 2013)*



^{*} Datenbasis: Parzellenwerte der Stechzylinderbeprobung 2013, n=4, N=192, adjustierte Merkmalsmittelwerte der Düngungsvarianten mit gleichen Buchstaben unterscheiden sich im LSD nicht signifikant ($\alpha \le 0.05$)

Auswirkungen von pflugloser Bodenbearbeitung auf den Boden-Eindringwiderstand (Humusreproduktionsversuch Güterfelde)*



08.12.2015

Auswirkungen von organischer Düngung bei pflugloser Bodenbearbeitung auf die Luft- und nutzbare Feldkapazität in der Ackerkrume (Humusreproduktionsversuch Güterfelde, 2013)*

^{*} Datenbasis: Parzellenwerte der Stechzylinderbeprobung 2013, n=4, N=192, adjustierte Merkmalsmittelwerte der Düngungsvarianten mit gleichen Buchstaben unterscheiden sich im LSD nicht signifikant ($\alpha \le 0.05$)

Fazit

Nach 15 Versuchsjahren Ökologische Fruchtfolge Güterfelde führte pfluglose Bodenbearbeitung mit und ohne Stalldung im Vergleich zum Pflugeinsatz

- in der Oberkrume > zu tendenziell geringerer TRD
 - zu tendenziell höherem GPV & LK
- in der Unterkrume > zu signifikant höherer TRD
 - zu tendenziell geringerem GPV & LK

Nach 10 Versuchsjahren Humusreproduktionsversuch Güterfelde führte pfluglose Bodenbearbeitung bei organischer Düngung

- in der Oberkrume > zu signifikant geringer TRD und tendenziell höherem GPV
- in der Unterkrume > zu tendenziell höherer TRD und tendenziell geringerem GPV

Messungen des Boden-Eindringwiderstandes bestätigen die TRD-Änderungen in der Ackerkrume, zeigen jedoch keine Differenzierung von organischer Düngung auf.

In beiden Versuchen hat dauerhaft pfluglose Bodenbearbeitung

keinen Einfluss auf die nFK

In beiden Versuchen hat die organische Düngung bei dauerhaft pfluglose Bodenbearbeitung

keinen Einfluss auf die nFK

Résumé:

Merkmalsdifferenzierung unter den gegebenen Standortbedingungen vollzieht sich im Rahmen von guter fachlicher Praxis der Bodenbewirtschaftung in Zeiträumen > 15 Jahren, was in der Landbaupraxis zu berücksichtigen ist.

Quellenverzeichnis

- ¹ Blume et al. (2010): Scheffer/Schachtschabel Lehrbuch der Bodenkunde. 16. Auflage. Spektrum Akademischer Verlag. Heidelberg: 569 S.
- ² ad-hoc AG Boden: Bodenkundliche Kartieranleitung. KA5. 5. Auflage. Hannover. 438 S.
- Diepenbrock, Ellmer & Leon (2012): Ackerbau, Pflanzenbau und Pflanzenzüchtung.
 Auflage. Verlag Eugen Ulmer. Stuttgart. 364 S.
- ⁴ Hallett & Bengough (2013): Managing the soil physical environment for plants IN: Gregory & Nortcliff (ed.): Soil Conditions and Plant Growth. Wiley-Blackwell. Chichester: 238-268
- ⁵ Petelkau & Rogasik (1994) IN: Beese et al. (1999): Schutz des Bodens. Buchwald & Engelhardt (Hrsg.). Economia Verlag. Bonn. 156 S.
- ⁶ Buchter & Häuser (2009): Arbeitshilfe der Bodenschutzstellen der Kantone. Kantonale Bodenschutzfachstellen (Hrsg.). www.bafu.admin.ch, abgerufen am 02.11.2015
- ⁷ Schmidt, Götze, Zimmer, Dittmann, Bergner & Kroschewski (2012): Einfluss von langjähriger Bodenbearbeitung mit und ohne Pflug auf die Bodenstruktur in der Ökologischen Fruchtfolge Güterfelde. Mitt. d. Gesell. f. Pflanzbauwiss. Band 24 Verlag Liddy Halm. Göttingen. 2012. S. 166-167

Bildquelle: Epperlein (2015)

Zum Wert von Dauerversuchen im "Jahr des Bodens"

Vom Kurzfristigen ist es nur ein kleiner Schritt zum Kurzsichtigen.

Geschwindigkeit schlägt Gründlichkeit, das Risiko die Solidität.

Der Mangel an Seriosität wird zum Anspruch.

Danke für Ihre Aufmerksamkeit!