Nährstoffmanagement im Wasserschutzgebiet

Nossen, den 30. Oktober 2019

Fachtagung – Nährstoffmanagement im Ökolandbau (LfULG)

Dr. Bernhard WagnerGeschäftsführer der Wassergut Canitz GmbH
Unternehmen der Leipziger-Gruppe

Agenda

- 1. Problemstellung Was hat die Landbewirtschaftung mit der Trinkwasserqualität zu tun?
- 2. Wer ist die Wassergut Canitz GmbH und warum sind wir Projektpartner?
- 3. Welche Erfahrungen haben wir beim präventiven Trinkwasserschutz und welche Instrumente nutzen wir hierbei?
- 4. Was sind die Aufgaben rund um die Landbewirtschaftung im Projekt: "Wertvoll Stadt-Land-Partnerschaft Leipzig & Umland"
- 5. Ziele und Vision für die Stadt Leipzig und deren Umland und weitere Projekte

1. Problemstellung – Was hat die Landbewirtschaftung mit der Trinkwasserqualität zu tun?

Spannungsfeld Wasserschutz – Landnutzung

- Zwei Drittel des Trinkwassers in Deutschland wird aus dem Grundwasser gewonnen.
- Doch durch die Landbewirtschaftung ist dieses häufig mit Nitrat,
 PSM-Rückständen und Arzneimittelrückständen belastet.
- So stellen Art und Weise der Landbewirtschaftung, Klima- und Standortbedingungen nicht selten alle Beteiligte am Entstehungsprozess "Trinkwasser" vor große Herausforderungen.
- Qualität und Sicherheit des Grundwassers woraus unser wichtigstes Lebensmittels – das Trinkwasser – gewonnen wird gilt es nachhaltig zu sichern.

Konfliktfeld Wasserschutz – Landnutzung

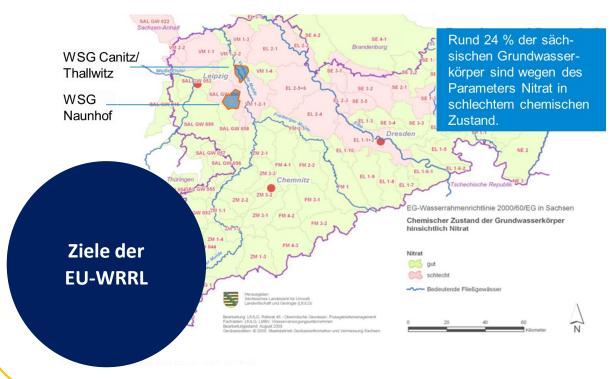
Hoher Schutzanspruch für Wasser

Grundwassergefährdung durch Landnutzung

- » Umsetzungsdefizit landwirtschaftliche Fachgesetzgebung: N-Saldo in D bei 104/94 kg N/ha*a (UBA 2010/2017); Ziel lt. DüVO im FF-Mittel 60 kg N/ha*a (dreijährig)
- » standörtlich ausreichende Wirksamkeit landwirtschaftlichen Fachrechts??

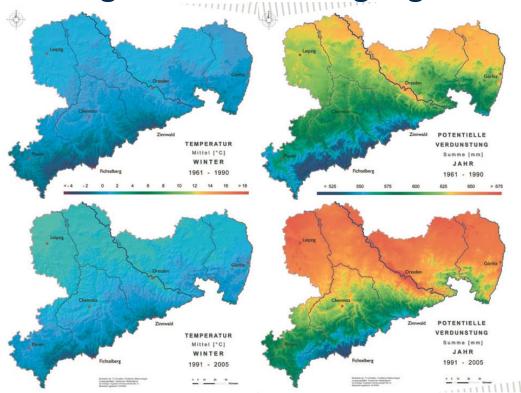
Beispiel: Nährstoffbegrenzungen der Düngeverordng. überall ausreichend, um **UQN** als **Konzentration**sziel zu erreichen?

» Standortbezogenes Regelungsdefizit Beispiel: Gärresten etc.


UBA Bestandesaufnahme WRRL: Parameter Nitrat

(Grundwasserkörper in schlechtem Zustand bezüglich Nitrat 2017)

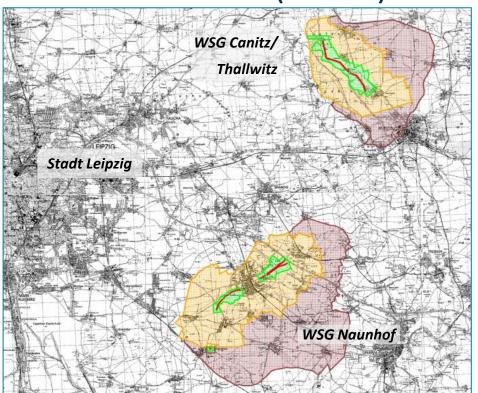
Situation regional und Überregional



- 2. Bewirtschaftungspläne für Sachsen 2014
- 17 GWK überschreiten den Grenzwert für Nitrat (50mg Nitrat/l Wasser) nach Grundwasserverordnung

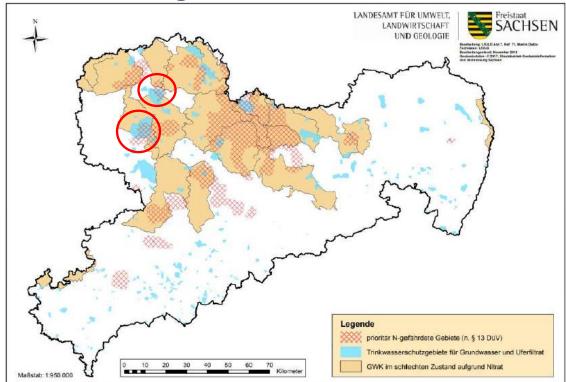
Quelle: ergänzt nach LfULG 2018

Witterungsverlauf der vergangenen Jahre:


Klimatische Änderungen sind nicht nur prognostiziert, sondern zu beobachten:

Temperaturanstieg, ∆ Niederschlagsverteilung Verdunstungsanstieg

Quelle: Klimaatlas Sachsen


Wasserressourcen (TWSG) für Leipzig & Umland

- Fläche WSG ca. 136 km² (13.600 ha)
 davon
- ca. 91 km² (9.100 ha)
 Landwirtschaftliche Nutzfläche

Prioritär N-gefährdete Gebiete in Sachsen

Quelle: LfULG 2018

2. Wer ist die Wassergut Canitz GmbH und warum sind wir Projektpartner?

Die Aufgabe der Wassergut Canitz GmbH

 Die Wassergut Canitz GmbH, als Tochterunternehmen der Leipziger Wasserwerke (Kommunale Wasserwerke Leipzig GmbH), hat als erstes Betriebsziel die Sicherstellung sauberer Grundwasserneubildung. → Hauptprodukt

Die Leipziger Wasserwerke im Überblick

Trinkwasserversorgung und Abwasserentsorgung in Leipzig und Umland

Anlagen und Netze:

- 6.377 km Leitungsnetz
- 5 Wasserwerke
- 25 Kläranlagen
- 380 Anlagen zur Abwasserbehandlung

Versorgung Trinkwasser:

- 688,600 EW
- 36 Mio. m³/a

Entsorgung Abwasser:

- 656.400 EW
- 39 Mio. m³/a

Kennzahlen (2017):

Jahresumsatz: 145,1 Mio. €

Bilanzsumme: 1.050 Mio. €

Ergebnis 28,3 Mio. €

Investitionen: 54,4 Mio. €

Mitarbeiter:

- 571 Mitarbeiter bei IWW
- 806 Mitarbeiter in der Leipziger Wasserwerke Gruppe

Betriebsspiegel der Wassergut Canitz GmbH I

ha

ha

70

909

ca.

betrieusgroße.				
Ackerland		622	ha	
Grünland		137	ha	
Feldgehölze		25	ha	
Hecken	ca.	14	km	
Unland		14	ha	
Streuobstwiesen		8	ha	
Wege, Straßen, Hof, TWSZ	I	33	ha	

Alle Flächen liegen in den Trinkwasserschutzzonen I bis III.

Potriobcarößo.

Wald

Summe:

Arbeitskräfte:

- 1 Geschäftsführer
- 5 Mitarbeiter
- 1 wiss. Mitarbeiterin
- 1 Azubi (wieder ab 2017)
- Anerkannter Ausbildungsbetrieb für Landwirt/-in
- 3 geringfügig Beschäftigte
- 13 Saisonarbeitskräfte für 2 Monate
- 4 Saisonarbeitskräfte für 2 Monate

9 % der landwirtschaftlichen Fläche in beiden Wasserschutzgebieten

Betriebsspiegel der Wassergut Canitz GmbH II

Standortverhältnisse:

lehmiger Sand/sandiger Lehm alluviale und diluviale Herkunft

Ackerland 52 BP Grünlandzahl 32 BP

Niederschlag 550 mm (fallend/ Verteilung)

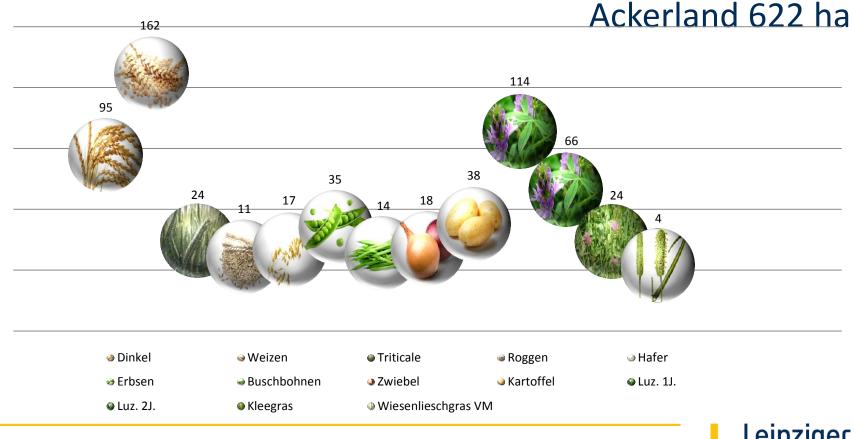
Höhenlage 100 m NN

Niederterrasse bis 2 m Auenlehm

Hochterrasse bis 0,6 m Mittelsand

280 Hektar Ackerland können beregnet werden

70 Hektar Ackerland liegen im Außenbereich


(25 KM entfernt)

25 Hektar Grünland liegen im Außenbereich

(15 km entfernt)

Wasserwerke

→ "Nebenprodukt"

Erbsen – 39 ha - 120 t - 110 T Konsumenten

Bohnen - 14 ha - 175 t - 100 T Konsumenten

Kartoffeln – 32 ha - 900 t - 16 T Konsumenten

Zwiebeln – 18 ha - 650 t - 100 T Konsumenten

Ernte in der Wassergut Canitz GmbH

Ernte

1.000 t 10.000 Konsumenten

WGC 50% für Ernährung

Getreideverwendung Deutschland Ernährung 23% Futter 64% Industrie 13%

Weizen - 76 ha - 250 t

Triticale – 96 ha - 325 t

Roggen – 8 ha - 18 t

Ernte in der Wassergut Canitz GmbH

Ernte

Beides unverzichtbar

Nährstoffe & Unkrautmanagement

Luzerne - 205 ha - Futter/Energie/Boden

Grünland - 106 ha – Weide/Heu

Beste Praxis: Wasserschutz durch wasserschutzgerechten ökologischen Landbau

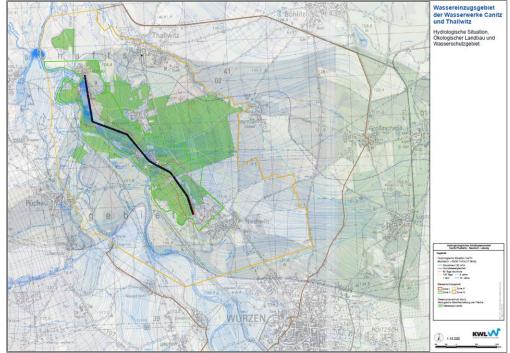
Beste Praxis: Wasserschutz durch wasserschutzgerechten ökologischen Landbau

Wasserwerke

Fruchtfolgebeispiel

8-feldrig (Hochterrasse)

Wassergut Canitz GmbH


Wie ernähren wir unsere Böden / unsere Pflanzen

- Fruchtfolge
- Organische Düngung
 - Stalldung → eingeschränkt verfügbar
 - Gründüngung / Transfer-Mulch →
 Verdunstungsschutz
 - Dungsilage
 - eigens erzeugter Kompost
- Kalium
- Kalk

Flächen der Wassergut Canitz GmbH im Wasserschutzgebiet der WW Canitz / Thallwitz

Zertifizierungen im Bereich Qualität & Lebensmittelsicherheit ist auch praktizierter Grundwasserschutz

- 1. Anbauverband Bioland e.V. (Gäa e.V. 1991-2004 u. Bioland e.V. seit 2004)
- 2. Bescheinigung nach Artikel 29 der Verordnung (EG) Nr. 834/2007
- 3. QS-GAP & GLOBAL G.A.P. (GGN-Nr.:4049929969360)
 - 1. Kartoffel
 - 2. Zwiebel
- 4. QS-GAP (FIAS) & GLOBAL G.A.P. GRASP Risiko- Einschätzung für Soziale Belange von Arbeitern
- 5. Regionalfenster Sachsen
- 6. Energiemanagement Leipziger Wasserwerke ISO 50001
- 7. DLG-Nachhaltigkeitsstandart / SMART
- 8. Analysen für Produkte und Boden

3. Welche Erfahrungen haben wir beim präventiven Trinkwasserschutz und welche Instrumente nutzen wir hierbei?

Reaktionsmöglichkeit des Wasserversorgers

Ausweichen:

stärkere Nutzung gering belasteter Brunnen (Steuerung des Brunnenbetriebs in den Fassungen bis zur Aufgabe von Brunnen- oder Wasserwerksstandorten)
Nutzung geringer oder gar nicht belasteter, tieferer Grundwasserstockwerke

Reparieren:

Aufbereitung des Wassers ("Schadstoffe ausfiltern" → Kosten)

Vorsorge:

Vermeidung von Beeinträchtigungen der genutzten Ressource

Wasserschutz für Leipzig & Umland

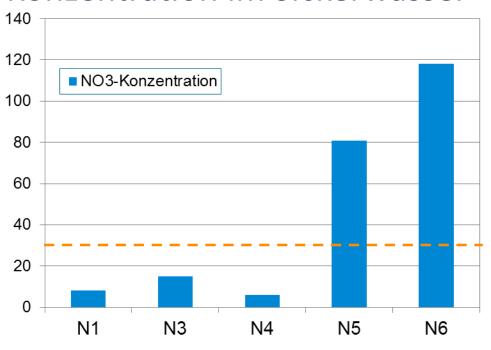
1907: Kauf des Landes, der Dörfer und Güter um die Wasserfassung Canitz durch den Rat der Stadt Leipzig

Ziel: Einflussnahme auf die Landnutzung

1990/91: Umstellung auf ökologischen Landbau

- → Gründung der Wassergut Canitz GmbH (1994)
 - <u>Ziel</u>: Wasserschützende Landnutzung mit geringsten Nährstoffausträgen und Vermeidung von PSM-Belastungen

2002: Einführung einer zielorientierten Ausgleichsregelung


• <u>Ziel</u>: Begrenzung des Stickstoff-Eintrages in das Grundwasser zur Sicherung einer guten Wasserqualität in den Brunnen

Adolph Thiem empfahl den Kauf von Land "zum hygienischen Schutz der Wasserfassungen"

Berechnete Ergebnisse der Nitrat-Konzentration im Sickerwasser

N1 Wasserschutzoptimierter Ökologischer Landbau (IST)

N3 Wald

N4 Grünland

N5 Konventionell mit praxistauglicher Begrenzung der N-Salden

N6 Konventionell im Rahmen der WSG-VO (ogL)

- Ökolandbau, Wald und Grünland unterschreiten schon im Sickerwasseraustrag den Zielwert 30 mg NO3/I. ⇒ kein Risiko, Verdünnungseffekt
- N-Saldo und konventionelle VO- Varianten zeigen im Sickerwasser deutlich h\u00f6here Nitratkonzentrationen ⇒ Risiko

Ökologischer Landbau und Grundwasserschutz – relevante Kenngrößen

Tierarzneimittel / Pathogene Keime 🔹

Pflanzenschutzmittel

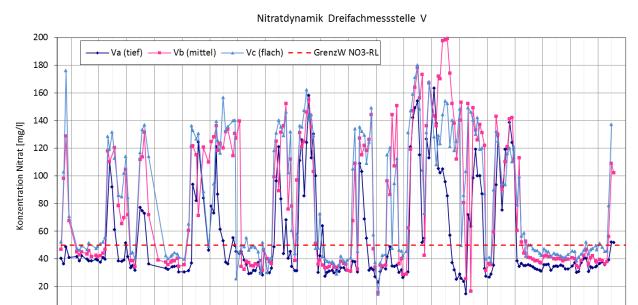
Stickstoff – Nitrat im Grundwasser* 💠

Ökologischer Landbau und Grundwasserschutz – relevante Kenngrößen

		Konventionell	EU-Bio	Deutscher Bio- anbauverband
	Limitierung N-Menge Düngemittel	Bedarfsermitt- lung nach DüVO ≤ 170 kg N/ha und Jahr aus Wirtschafts- düngemitteln und Gärresten (zuzüglich anrechenbarer Verluste)	Bedarfsermitt- lung nach DÜVO ≤ 170 kg N/ha und Jahr aus Wirtschafts- düngemitteln tierischer Herkunft	Bedarfsermitt- lung nach DüVO ≤ 112 kg N/ha und Jahr alle zugeführten Düngemittel
	Zufuhr externer Düngemittel	zulässig im allgemein gültigen gesetzlichen Rahmen	zulässig nach EU-VO 834/2007	≤ 40 kg N/ha

Hinweis:

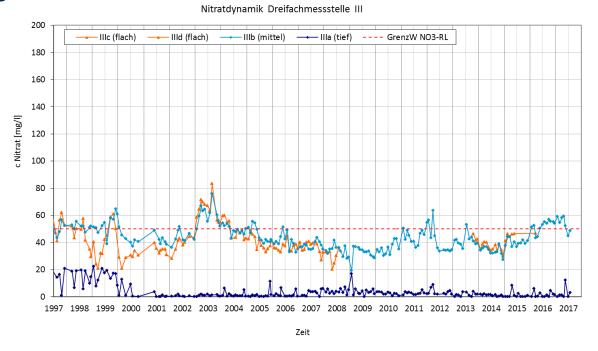
Metastudie zum Thema:


"Leistungen des Ökologischen Landbaus für Umwelt und Gesellschaft"

- Biodiversität
- Bodenfruchtbarkeit
- Grund- und Oberflächenwasserschutz
- Klimaschutz und Klimaanpassung
- Ressouceneffizienz sowie Stoff- und Energieflüsse
- Tierwohl

21.1.2019 Berlin (CityCube)

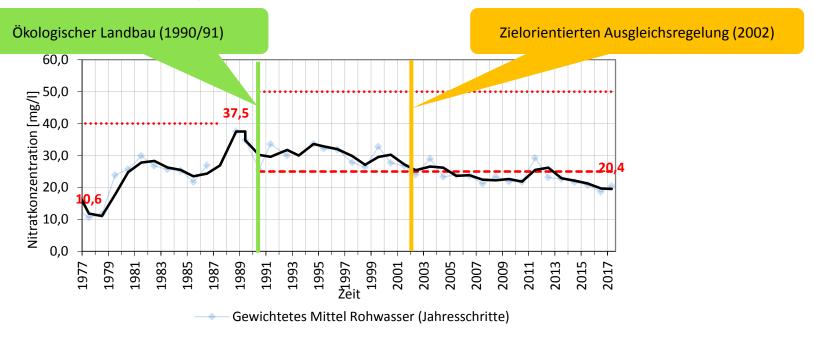
Nitratdynamik einer Mehrfachmessstelle konventioneller Anbau, Gemischtbetrieb, WSG-VO


Zeit

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

3. Welche Erfahrungen haben wir beim präventiven Trinkwasserschutz und welche Instrumente nutzen wir hierbei?

Nitrat-Dynamik einer Mehrfachmessstelle Wasserschutzleistung des ökologischen Landbaus



3. Welche Erfahrungen haben wir beim präventiven Trinkwasserschutz und welche Instrumente nutzen wir hierbei?

Nitratkonzentration Wasserwerk Canitz

Jahresmittelwerte, Rohmischwasser

Die Indikatoren - Prüfkriterien des DLG-Zertifikats

"Nur was man messen kann, kann man auch managen!

Indikatoren sind die Messgrößen, ihre Soll- und Ist-Werte werden verglichen.

Im Wassergut wird REPRO seit 20 Jahren eingestzt.

3. Welche Erfahrungen haben wir beim präventiven Trinkwasserschutz und welche Instrumente nutzen wir hierbei?

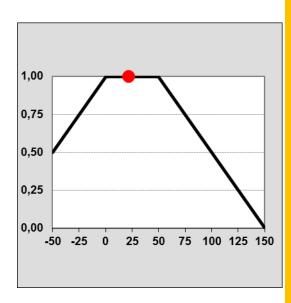
Die Nachhaltigkeits- (Umwelt)indikatoren

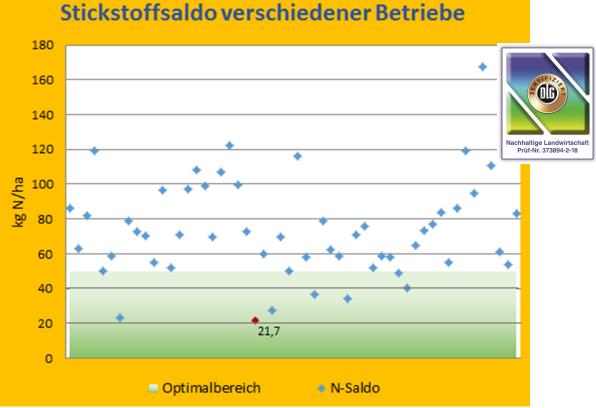
Ökologische Indikatoren

- Stickstoff-Saldo
- 2. Phosphor-Saldo
- 3. Humus-Saldo
- 4. Agrobiodiversität
- 5. Landschaftspflege
- 6. Energieintensität
- Pflanzenschutzintensität
- 8. Bodenschadverdichtung
- 9. Bodenerosion
- 10. Treibhausgase

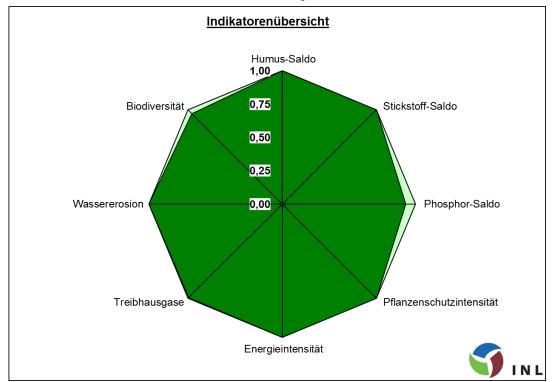
Ökonomische Indikatoren

- Betriebseinkommen/Wertschöpfung
- 2. Relative Faktorentlohnung
- Ausschöpfung der mittelfristigen Kapitaldienstgrenze
- 4. Eigenkapitalveränderung im Unternehmen
- 5. Nettoinvestition
- 6. Gewinnrate


Soziale Indikatoren


- .. Entlohnung der Arbeitskraft
- 2. Arbeitsbelastung
- 3. Aus- und Fortbildung
- 4. Urlaubstage
- 5. Mitbestimmung
- 6. Gesellschaftliche Leistungen

3. Welche Erfahrungen haben wir beim präventiven Trinkwasserschutz und welche Instrumente nutzen wir hierbei?

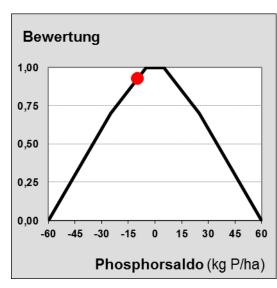

Stickstoffbilanz

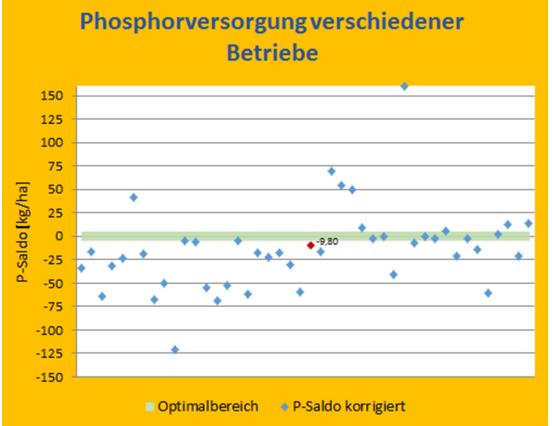
Das neue Prüfkonzept - DLG-Nachhaltigkeitsstandard

Nährstoffbilanz für 2016

<u> </u>	<u> </u>	1 011				
Kennzahl	ME	2013	2014	2015	2016	2013 - 2016
Landw. Nutzfläche	ha LN	741,7	739,7	731,9	746,5	740,0
N-Entzug (Gesamt)	kg N/ha	112	152	131	143	135
Hauptprodukt	kg N/ha	103	136	119	132	123
Nebenprodukt	kg N/ha	10	15	12	11	12
N-Entzug (Ernteertrag)	kg N/ha	96	127	88	113	106
N-Zufuhr	kg N/ha	109	126	159	169	141
Immission	kg N/ha	20	20	20	20	20
Saatgut	kg N/ha	2	2	2	2	2
Symbiontische N-Fix.	kg N/ha	57	61	69	92	70
Mineraldünger	kg N/ha	0	0	0	0	0
Organischer Dünger	kg N/ha	30	43	68	55	49
Strohdüngung	kg N/ha	2	6	8	5	5
Gründüngung	kg N/ha	14	18	34	25	23
Stallmist	kg N/ha	7	8	10	8	8
Gülle, Jauche	kg N/ha	0	0	0	0	0
Sonst. Org. Dünger	kg N/ha	6	11	15	16	12
Δ N Bodenvorrat	kg N/ha	11	11	Я	2	-3
N-Saldo (mit ∆ Bodenvorrat)	kg N/ha	8	-15	20	23	9
N-Ausnutzung	%	0	0	82	85	

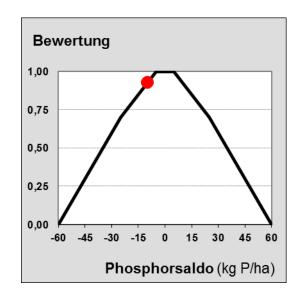
Nährstoffbilanz für 2016


Flächenbezogene Stickstoffbilanz auf unterschiedlichen Ebenen für 2016 (REPRO)


Flächenbezogene Stickstoffbilanz auf unterschiedlichen Ebenen für 2016 (DüVo)

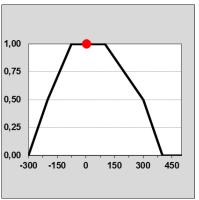
Kennzahl	ME	LN	AL	GL	Kennzahl	ME	LN	AL	
Fläche	ha	746,5	624,2	122,3	Fläche	ha	746,5	624,2	
N-Entzug (Gesamt)	kg N/ha	143	150	108	N-Entzug (Gesamt)	kg N/ha	140	146	Nachhaltige Landwirts Prüf-Nr. 373894-2-1
Hauptprodukt	kg N/ha	132	137	108	Hauptprodukt	kg N/ha	128	132	174171110100072
Nebenprodukt	kg N/ha	11	13	0	Nebenprodukt	kg N/ha	12	14	0
N-Entzug (Ernteertrag)	kg N/ha	113	118	86	N-Entzug (Ernteertrag)	kg N/ha	110	115	86
N-Zufuhr	kg N/ha	169	174	143	N-Zufuhr	kg N/ha	110	124	41
Immission	kg N/ha	20	20	20	Immission	kg N/ha	-	-	-
Saatgut	kg N/ha	2	2	0	Saatgut	kg N/ha	-	-	-
Symbiontische N-Fix.	kg N/ha	92	106	19	Symbiontische N-Fix.	kg N/ha	72	83	18
Mineraldünger	kg N/ha	0	0	0	Mineraldünger	kg N/ha	0	0	0
Organischer Dünger	kg N/ha	55	45	104	Organischer Dünger	kg N/ha	38	41	23
Strohdüngung	kg N/ha	5	6	0	Strohdüngung	kg N/ha	6	7	0
Gründüngung	kg N/ha	25	26	22	Gründüngung	kg N/ha	24	24	22
Stallmist	kg N/ha	8	10	0	Stallmist	kg N/ha	6	7	0
Gülle, Jauche	kg N/ha	0	0	0	Gülle, Jauche	kg N/ha	0	0	0
Sonst. Org. Dünger	kg N/ha	16	3	82	Sonst. Org. Dünger	ky ivina	2	2	2
∆ N Bodenvorrat	kg N/ha	2	2	0	△ N Bodenvorrat	kg N/ha	-	-	
N-Saldo (mit \(\Delta \) Bodenvorrat)	kg N/ha	23	21	35	N-Saldo	kg N/ha	-30	-22	-67
N-Ausnutzung	%	85	87	76	N-Ausnutzung	%	0	0	0

Phosphorbilanz



Phosphorbilanz ausgleichen

- Bilanzlücke schließen
- Problem Rohphosphat (Schwermetalle / Uran etc.)
- Phosphor-Rezyklate belasten die Böden deutlich weniger als Klärschlamm (DBU 2019)
- Kompost



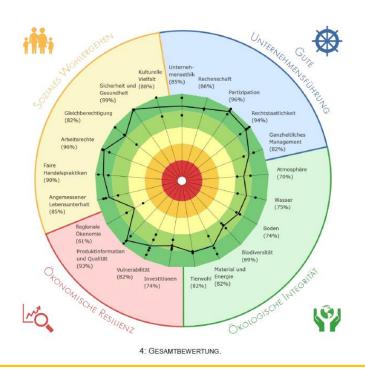
Humusbilanz

Humusbilanzierung für Ackerland (AL) nach CC-Regelung und HE-Methode (REPRO)

Versorgungsstufe:

 $A = sehr \ niedrig \qquad (< -200 \ kg \ Humus-C \ ha^{-1} \ a^{-1})$ $B = niedrig \qquad (-200 \ bis \ -76 \ kg \ Humus-C \ ha^{-1} \ a^{-1})$ $C = optimal \qquad (-75 \ bis \ 100 \ kg \ Humus-C \ ha^{-1} \ a^{-1})$ $D = hoch \qquad (101 \ bis \ 300 \ kg \ Humus-C \ ha^{-1} \ a^{-1})$ $E = sehr \ hoch \qquad (> 300 \ kg \ Humus-C \ ha^{-1} \ a^{-1})$

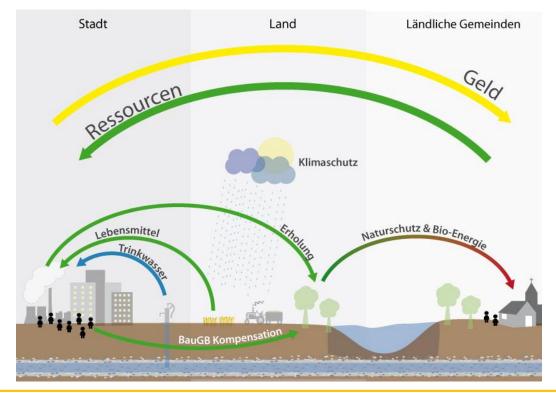
Kennzahl	ME	2013	2014	2015	2016	2013 - 2016			
Ackerland	ha AL	620,8	619,3	616,1	624,2	620,1			
Cross Compliance Regelung									
Humusbedarf	kg C/ha AL	-218	-218	-184	-202	-206			
Humusersatzleistung	kg C/ha AL	425	544	602	481	513			
Humusmehrerleistung	kg C/ha AL	238	233	254	188	228			
Zufuhr organischer Dünger	kg C/ha AL	188	311	348	293	285			
Strohdüngung	kg C/ha AL	70	180	145	157	138			
Gründüngung	kg C/ha AL	48	55	90	51	61			
Stallmist	kg C/ha AL	65	67	85	77	74			
Gülle	kg C/ha AL	0	0	0	0	0			
Sonstige org. Dünger	kg C/ha AL	5	9	28	8	13			
Humussaldo	kg C/ha AL	207	327	418	279	307			
HE-Methode – Umrechnung in kg C 1 HE = 1 t Humus mit 580 kg C (Leithold et al. 1997)									
Humusbedarf kg C/ha AL		-567	-684	-445	-468	-541			
Humusersatzleistung ges.	kg C/ha AL	430	548	542	491	503			
Humusmehrerleistung	kg C/ha AL	271	299	220	238	257			
Zufuhr organischer Dünger	kg C/ha AL	159	248	322	253	245			
Strohdüngung	kg C/ha AL	50	130	122	112	103			
Gründüngung	kg C/ha AL	40	46	81	56	56			
Stallmist	kg C/ha AL	70	72	92	78	78			
Gülle	kg C/ha AL	0	0	0	0	0			
Sonstige org. Dünger	kg C/ha AL	0	1	27	7	9			
Humussaldo	kg C/ha AL	-137	-136	97	23	-38			
HE-Versorgungsgrad	6	76	80	122	105	96			
Versorgungsstufe		В	В	С	С	C			



2.1 Gesamtbewertung

SMART Gesamtbewertung in 2019

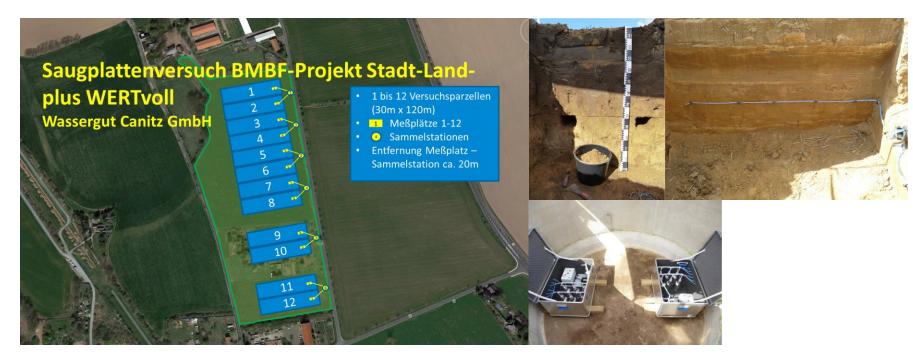
4. Was sind die Aufgaben rund um die Landbewirtschaftung im Projekt: "Wertvoll - Stadt-Land-Partnerschaft Leipzig & Umland"



Warum sind wir Projektpartner im Projekt

- Langjährige Erfahrung im Bereich Landnutzung , präventiven Trinkwasserschutz durch ökologischen Landbau
- Erfahrungen können auch helfen die Situation in den GWK im Leipziger Umland dauerhaft zu verbessern
- Trinkwassergewinnungsgebiete liegen im Umland von Leipzig → damit besteht ein hohes Interesse an einer langfristigen Kooperation zwischen der Stadt Leipzig und dem Umland
- Die Leipziger Wasserwerke und die Wassergut Canitz GmbH verstehen sich nicht zuletzt als Schnittstelle im Interdisziplinären Projekt Stadt-Land-Partnerschaft Leipzig & Umland

Projektbeschreibung – WERTvoll - I



Projektbeschreibung – WERTvoll - II

- Eine ökologische und trinkwasserschutzgerechte Bewirtschaftung in Verbindung mit Qualitätszielen im Sickerwasser und Humuserhalt auf den Äckern reduziert die Kosten für die Trinkwasseraufbereitung für Leipzig und Umland
- Gleichzeitig leistet diese Form der Landnutzung substanzielle Beiträge für regionale Klimaschutzleistungen kann einen wesentlichen Beitrag zur Erreichung von Klimazielen leisten.

Saugplattenversuch in der Wassergut Canitz GmbH

Bewirtschaftung läuft unter Praxisbedingungen

Projektbeschreibung - WERTvoll - III

Kooperation mit den Landwirtschaftsunternehmen in den WSG:

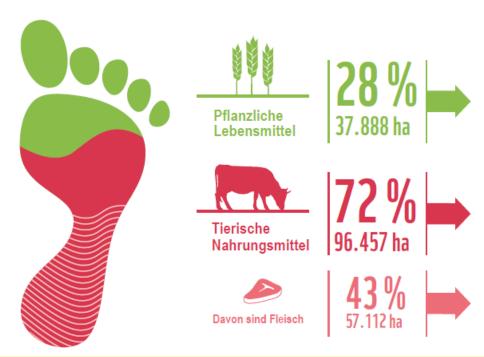
• Umweltanalyse Status Quo → Ökonomische Betrachtung

SCHWEISFURTH STIFTUNG

ARTIN-LUTHER-UNIVERSITÄ

- zalf.
- Entwicklung von möglichen Umstellungsszenarien für einen wasserschutzge ökologischen Landbau → Ökonomische Betrachtung
- Wassergut liefert umfangreiche Erfahrungswerte und validiert mittels der Saugplattenversuchsanlage das ökologische Anbausystem
- Potentiale an Ökosystem- & Klimaschutzleistung
- Dienstleister auch für Kompensationsmaßnahmen (PIK)

Projektbeschreibung – WERTvoll - IV


Eine "Marke aus dem Wasserschutzgebiet" bringt viele Vorteile:

- Kunden beeinflussen durch die Nachfrage dieser Produkte langfristig die Qualität deren Trinkwasser
- Ökonomie der landwirtschaftlichen Unternehmen (Kooperationspartner)
- Nachhaltige , ökologische, regionale Landnutzung kommt wieder in das Bewusstsein der Kunden und wird als solche wieder wahrgenommen -> Imageverbesserung der Landwirtschaft im Umland
- Transporteinsparung durch regionale "kurze" Wertschöpfungsketten macht erst eine signifikante THG-Reduktion möglich

Was braucht Leipzig pro Jahr?

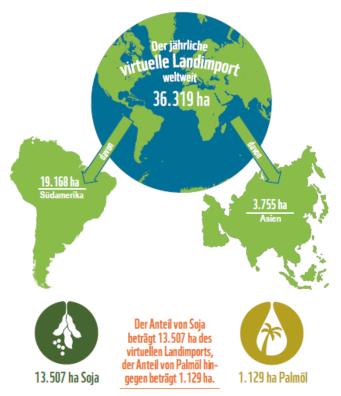
Quelle: WWF 2017

LN
(Anbaufläche)
Landkreis
Leipzig ca.
95.000 ha
(Quelle IHK
2012)

Der jährliche Flächenfußabdruck der Leipziger Ernährung beträgt

134.345 ha*

*Rundungsabweichungen können vorkommen



Was braucht Leipzig pro Jahr?

Quelle: WWF 2017

Der virtuelle Landimport aus anderen Regionen entspricht 27 % des gesamten Flächenfußabdrucks der Leipziger Emährung

An die eigene Nase fassen!

Quelle: LVZ Juli

25 % des

weltweiten

Wasserverbrauchs

fließt in den Anbau

Lebensmitteln, die

später weggeworfen

179 kg Obst,

Gemüse und

Fleisch wirft jeder

EU-Bürger im Jahr weg 2,6 Mio ha

Wird weltweit für

später

weggeworfene

Lebensmittel

bewirtschaftet

4600

Kalorien enthält

die Nahrung, die für jeden

Erdenbürger jeden Tag

geerntet wird. Davon

werden durchschnittlich

2000 pro Tag verzehrt

werden.

7 Mio. Brotscheiben

2017 in

britischen

Mülltonnen

gelandet

940 € sind die

Lebensmittel

wert, die in

Deutschland ein 4-

Personenhaushalt

pro Jahr wegwirft

60% der weltweit

produzierten

Lebensmittel landen

auf dem Müll bevor

sie einen Verbraucher

erreicht haben

12 Mrd Menschen

Wichschie

könnten von den

weltweit

produzierten

Lebensmitteln

ernähr werden

5. Ziele und Vision für die Stadt Leipzig und deren Umland

Ziele...

.. für die Landwirtschaft

- Optimierung der Produktionsprozesse
- Risikomanagement in Bereich Produkt- & Umwelthaftung
- Qualitätssicherung & Lebensmittelsicherheit
- Minimierung der Auswirkungen landwirtschaftliche Produktion auf die Umwelt (Grundwasser) & Schonung der Ressourcen
- Kommunikation mit der Gesellschaft
- Landwirt wird zum Dienstleister im Ressourcenschutz

Ziele...

.. für die Stadt und das Umland

- Nachhaltigen Trinkwasserschutz durch wasserschutzgerechte Landnutzung
- Klimaschutz durch regionale Wertschöpfungsketten mit einem Minimum an produktions- und transportbedingtem Energieaufwand
- ...

Vision...

.. für die Zukunft

- Die Gesellschaft ernährt sich zu großen Teilen aus dem Umland (den Wasserschutzgebieten) und sichert dadurch indirekt die Qualität des eigens verbrauchten Trinkwassers.
- Umweltbewusstsein verbessert sich, da die Auswirkungen des Konsumverhaltens direkt vor der eigenen Haustüre sichtbar werden
- Klimaschutzziele → realistisch
- Die Generation von morgen spricht wieder intensiv miteinander und nicht mittels Medien übereinander!

1. Landschaftspflege durch extensive

Rinderbeweidung – LfULG seit 2017

LANDESAMT FÜR UMWELT,
LANDWIRTSCHAFT
LANDWIRTSCHAFT
LAND GEOLOGIE
SACHSEN

- In diesem Projekt sollen die vielfältigen positiven Wirkungen einer extensiven
 Rinderbeweidung für Naturschutz und Landschaftspflege, insbesondere in speziell entwickelten praxisnahen Weidekonzepten umgesetzt und getestet werden.
- Neben der Erzeugung gesunder Nahrungsmittel und der Schaffung von Einkommei und Wertschöpfung im ländlichen Raum, kann gut praktizierte extensive Beweidur essentielle Beiträge zum Schutz von Biodiversität und Schutz der abiotischen Ressourcen leisten und Erholungslandschaften prägen. Inwieweit diese ökologisch wertvolle Nutzungsweise auch ökonomisch tragfähig ist, soll im Projekt ebenfalls betrachtet werden.
- Ein weiteres Ziel ist der Aufbau und die Fortentwicklung einer allgemein verbessert Fachkompetenz für extensive Beweidung im Freistaat Sachsen. Dazu sollen bis zum Jahr 2020 unter anderem die konzeptionellen **Grundlagen für ein Aus- und Fortbildungsmodul** geschaffen werden.

Ein Leitfaden für Rinderhalter

Probleme & Herausforderungen

- Sicherheit der Tiere während der Weidezeit
- Vorgaben durch Bioland zur Beweidung
- keine festen Weidezäune im Auenbereich
- Kosten dieser Tierhaltungsform
- technisch nutzbares Grünland
- Ersatz zum organischen Dünger Stalldung

2. PIK – Produktionsintegrierte Kompensation – HTW DD seit 2017

Projekte – Wassergut Canitz (ländlicher Raum) für Stadt Leipzig (Metropole)

Neue Ansätze der Kompensation von Eingriffen – Produktionsintegrierte Kompensation (PIK)

• <u>Produktionsintegrierte Kompensationsmaßnahmen (PIK)</u> sind naturschutzfachliche Maßnahmen auf landwirtschaftlich genutzten Flächen, die der Kompensation von Eingriffen in Natur und Landschaft dienen und die in landwirtschaftliche Betriebsweisen integriert werden.

Beispiele für derartige Maßnahmen sind z. B. Lerchenfenster, Blühstreifen oder auch partielle Flächenstilllegungen.

Hellriegel Institut FH Anhalt & TU Dresden

Kulturlandschaftsmanagement als Brücke zwischen Metropole und ländlichem Raum

Projekte – Wassergut Canitz (ländlicher Raum) für Stadt Leipzig (Metropole)

Neue Ansätze der Kompensation von Eingriffen – Produktionsintegrierte Kompensation (PIK)

Ziel

Wachsende Flächennutzungskonkurrenzen als auch der Artenrückgang im agrarischen Offenland zeigen, dass neue Synergien zwischen Landbewirtschaftung und Naturschutz gefragt sind. Die Umsetzung **Produktionsintegrierter Kompensationsmaßnahmen (PIK)** im Rahmen der Eingiffsregelung könnte die Situation deutlich entschärfen, da diese nicht zu den häufig kritisierten doppelten Flächenverlusten für die Landwirtschaft führen und Agrarbetriebe für die Maßnahmenumsetzung angemessen entlohnt werden.

Kooperation Stadt / Land

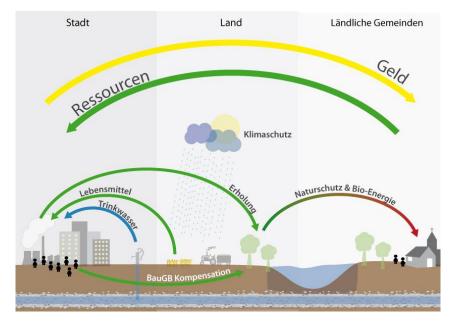
Kulturlandschaftsmanagement als Brücke zwischen Metropole und ländlichem Raum

3. Projekt: "Wertvoll - Stadt-Land-Partnerschaft Leipzig & Umland" – BMBF / FONA seit 2018

Projekt BMBF - WERTvoll Stadt-Land-Partnerschaft Leipzig & Umland

WERTvoll Stadt-Land-Partnerschaft Leipzig & Umland Synergienmanagement und Marktoptionen schaffen Wertschöpfung und stärken so die Resilienz der Kulturlandschaft in einer vernünftigen Stadt-Land-Partnerschaft. Leitinitiative Zukunftsstadt, Förderrichtlinie: Stadt-Land-Plus, Themenbereich Ressource Land

GEFÖRDERT VOM



Projektbeschreibung – WERTvoll - I

Ein "neuer Marktplatz" in Leipzig, eine Zusammenarbeit mit den kommunalen Unternehmen, der Landwirtschaft, dem Handwerk und dem Lebensmitteleinzelhandel sowie die Ergänzung und Stärkung bestehender Absatzwege sollen die Nachfrage nach regionalen (Öko-)Produkten und Ökosystemleistungen beleben.

Projektbeschreibung – WERTvoll - II

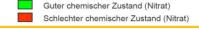
Eine ökologische und trinkwasserschutzgerechte Bewirtschaftung in Verbindung mit Qualitätszielen im Sickerwasser und Humuserhalt und -aufbau auf den Äckern reduziert die Kosten für die Trinkwasseraufbereitung für Leipzig und leistet gleichzeitig substanzielle Beiträge für regionale Klimaschutzleistungen, denn die Stadt Leipzig kann mit eignen Aktivitäten und den Möglichkeiten im Umland ihre Klimaziele erreichen.

Konfliktfeld Wasserschutz – Landnutzung

Hoher Schutzanspruch für Wasser

Grundwassergefährdung durch Landnutzung

» Umsetzungsdefizit landwirtschaftl. Fachgesetzgebung: N-Saldo in D bei 104/94 kg N/ha*a (UBA 2010/2016); Ziel lt. DüV im FF-Mittel 60 kg N/ha*a (dreijährig)


» standörtlich ausreichende Wirksamkeit landwirtschaftlichen Fachrechts??

Beispiel: Nährstoffbegrenzungen der Düngeverordng. überall ausreichend, um **UQN** als **Konzentration**sziel zu erreichen?

» Regelungsdefizit Beispiel: Gärreste

Bestandesaufnahme WRRL: Parameter Nitrat

(Albert 2011 nach Wasserblick/BfG 2010)

Entwicklung der Stickstoffflüsse in Deutschland

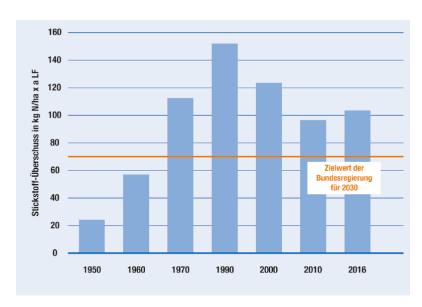
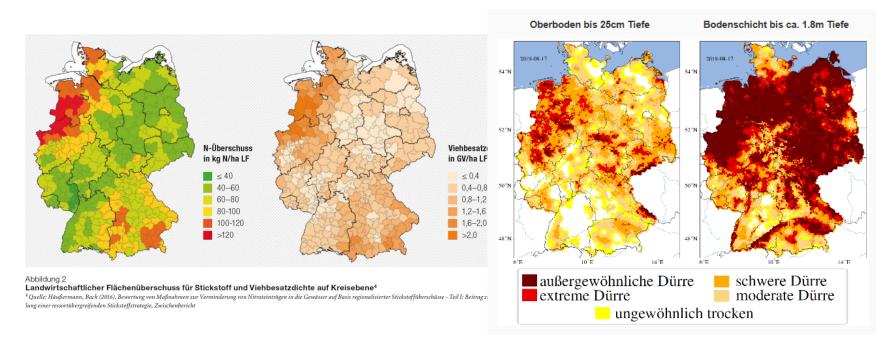
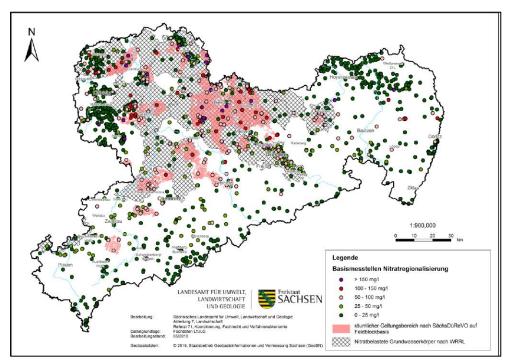


Abbildung 1
Entwicklung der Stickstoffüberschüsse in Deutschland²
²Quelle: Frede & Bach 2015 und BMEL 2018.


N-Salden der Wassergut Canitz GmbH

		2011	2012	2013	2014	2015	2016	2017	2018	Mittel
N-Saldo	kg N ha ⁻¹									
(mit Deposition &	LN									
Δ Boden-N-										
Vorrat)		13	21	8	-15	20	23	21	30	15

Beide bestehenden Ökobetriebe haben einen langjährigen N-Saldo von 15 kg/ha Konventionelle Betriebe haben einen 4 bis 5-fach höheren N-Saldo im langjährigen Mittel

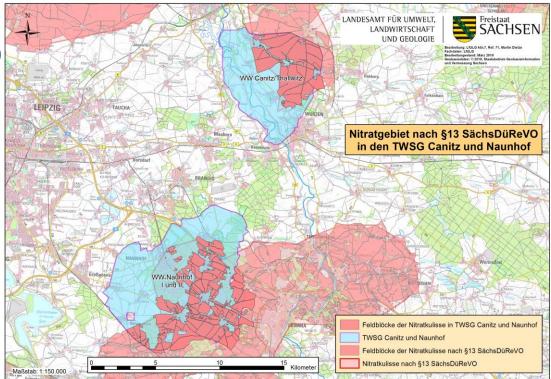


N-Überschüsse; Viehbesatz; Bodenwassergehalt etc.

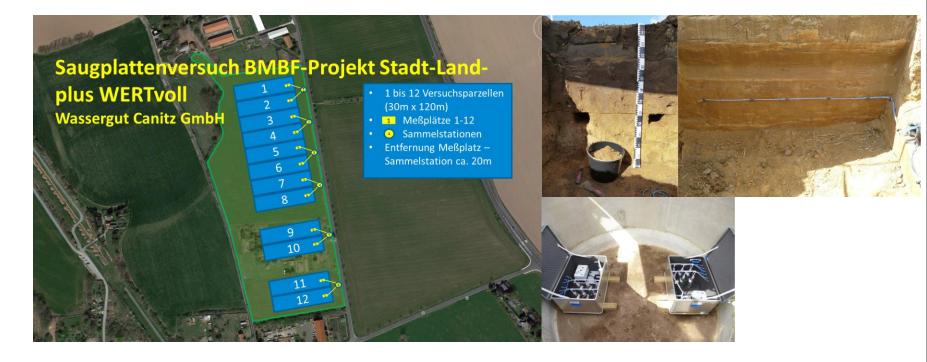
Übersicht zu Nitrat-Gebieten nach SächsDüReVO

Quelle: SMUL Sachsen, Dirk Gersten, Referat 72: Pflanzenbau

Monitoring von Messstellen in sächsischen Gewässern ergab:


 Ca. 25% der GWK erreichen nicht den guten chemischen Zustand, da sie zu hohe Nitratgehalte aufweisen

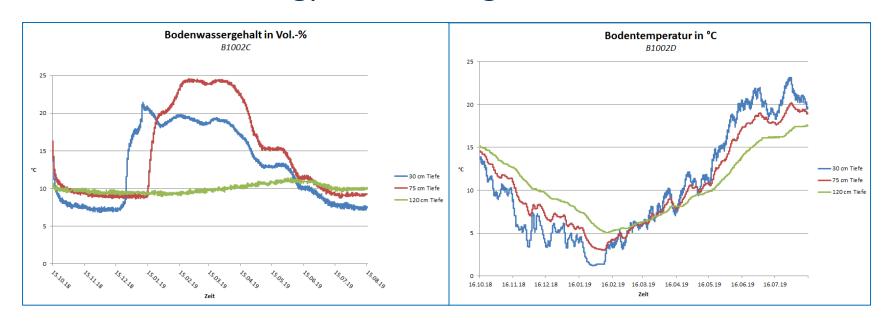
Unter Anwendung eines
Regionalisierungsverfahren wurden die
Punktdaten auf die Fläche übertragen
und anschließend einer fachlichen
Plausibilitätsprüfung unterzogen.
Neu durchgeführte Regionalisierung
reduzierte sich die ausgewiesene Fläche
auf 12% der Landesfläche


Nitratgebiet nach §13 SächsDüReVO in den TWSG Canitz/Thallwitz &

Naunhof März 2019

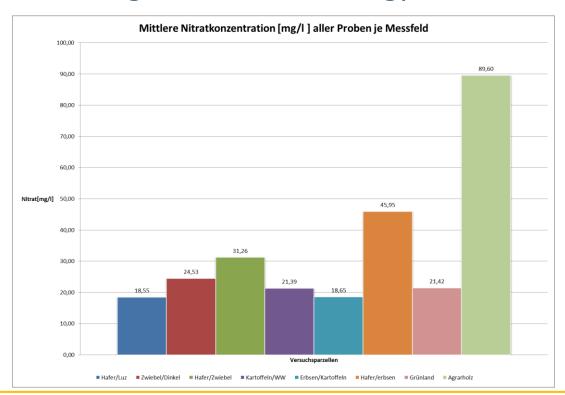
Saugplattenversuch in der Wassergut Canitz GmbH

Saugplattenversuch - Einbau



Saugplattenversuch in der Wassergut Canitz GmbH

						Luzer	ne						
Rand	Parzelle 1	Parzelle 2	Parzelle 3	Parzelle 4	Parzelle 5	Parzelle 6	Parzelle 7	Parzelle 8	Parzelle 10	Parzelle 11	Parzelle 12	Parzelle 13	Ran
2018 1	Luz. 1. J. 8	Hafer 7	7 Zwiebel 6	Hafer 5	Kart.	Erbsen 3	Hafer :	2 Luz. 2. J.					
2019 2	Luz. 2. J. 1	l Luz. 1. J. 8	B Dinkel 7	Zwiebel 6	WiWei 5	Kart. 4	Erbsen	3 WiWei					
2020 3	WiWei 2	2 Luz. 2. J. 1	1 Luz. 1. J. <u>8</u>	Dinkel 7	Zwiebel 6	WiWei 5	Kart.	4 Erbsen					
021 4	Erbsen 3	WiWei 2	2 Luz. 2. J. 1	Luz. 1. J. 8	B Dinkel 7	Zwiebel 6	WiWei	Kart.					
)22 5	Kart.	Erbsen 3	WiWei 2	2 Luz. 2. J. 1	l Luz. 1. J. <u>[</u> 8	B Dinkel 7	Zwiebel	6 WiWei					
023 6	WiWei 5	Kart.	4 Erbsen 3	WiWei 2	2 Luz. 2. J. 1	1 Luz. 1. J. <u>8</u>	Dinkel	7 Zwiebel				m	
24 7	Zwiebel 6	WiWei 8	Kart.	Erbsen 3	WiWei 2	2 Luz. 2. J. 1	Luz. 1. J.	8 Dinkel			P	BioNitrat	
)25 <u>8</u>	Dinkel 7	Zwiebel 6	6 WiWei 5	Kart.	Erbsen 3	WiWei 2	Luz. 2. J.	1 Luz. 1. J.	>	>	~	Vitr	
26 1	Luz. 1. J. 8	Dinkel 7	7 Zwiebel 6	WiWei &	Kart.	Frbsen 3	WiWei :	2 Luz. 2. J.	Wiese	Wies	Ą	at -	
27 2	Luz. 2. J. 1	l Luz. 1. J. <u>[</u> 8	B Dinkel 7	Zwiebel 6	WiWei 5	Kart. 4	Erbsen	3 WiWei	Ö -	ë 2	Agrarholz	<	
28 3	WiWei 2	2 Luz. 2. J. 1	1 Luz. 1. J. <u>8</u>	Dinkel 7	Zwiebel 6	WiWei 5	Kart.	4 Erbsen	_	10	hol	ersu	
29 4	Erbsen 3	WiWei 2	2 Luz. 2. J. 1	Luz. 1. J. 8	B Dinkel 7	Zwiebel 6	WiWei	Kart.			z	Versuch	
30 5	Kart. 4	Erbsen 3	WiWei 2	2 Luz. 2. J. 1	l Luz. 1. J. <u>[</u>	B Dinkel 7	Zwiebel	6 WiWei				_	
31 6	WiWei 5	Kart.	4 Erbsen 3	WiWei 2	2 Luz. 2. J. 1	1 Luz. 1. J. <u>8</u>	Dinkel	7 Zwiebel					
32 7	Zwiebel 6	WiWei 5	Kart. 4	Erbsen	WiWei 2	2 Luz. 2. J. 1	Luz. 1. J.	8 Dinkel					
33 8	Dinkel 7	Zwiebel 6	6 WiWei 5	Kart.	Frbsen 3	WiWei 2	Luz. 2. J.	1 Luz. 1. J.					
034 1	Luz. 1. J. 8	Dinkel 7	7 Zwiebel 6	WiWei &	Kart.	Erbsen 3	WiWei :	2 Luz. 2. J.					



Bodenwassergehalt & -temperatur der Monitoring Stationen der Saugplattenanalge

Erste Ergebnisse des Saugplattenversuches

Dargestellt ist die mittlere Nitratkonzentration je Parzelle im anfallenden Sickerwasser. Die Probenahme fand vom **08.04. bis 08.07.2019** statt.

Die Nitratkonzentration über die 8-feldrige Fruchtfolge beträgt 25,45 mg/l.

Auf Grund der Nachweise von weiteren Stoffen im Sickerwasser (bspw. Kohlenstoff etc.) ist mit einem weiteren Denitrifikationspotential bis zum Grundwasserleiter zu rechnen.

Projektbeschreibung – WERTvoll - III

Kooperation mit den Landwirtschaftsunternehmen in den WSG:

Umweltanalyse Status Quo → Ökonomische Betrachtung

SCHWEISFURTH STIFTUNG

ARTIN-LUTHER-UNIVERSITÄ

- Entwicklung von möglichen Umstellungsszenarien für einen wasserschutzge ökologischen Landbau → Ökonomische Betrachtung
- Wassergut liefert umfangreiche Erfahrungswerte und validiert mittels der Saugplattenversuchsanlage das ökologische Anbausystem
- Potentiale an Ökosystem- & Klimaschutzleistung
- Dienstleister auch für Kompensationsmaßnahmen (PIK)

Projektbeschreibung – WERTvoll - IV

Eine "Marke aus dem Wasserschutzgebiet" bringt viele Vorteile:

- Kunden beeinflussen durch die Nachfrage dieser Produkte langfristig die Qualität deren Trinkwasser
- Ökonomie der landwirtschaftlichen Unternehmen (Kooperationspartner)
- Nachhaltige, ökologische, regionale Landnutzung kommt wieder in das Bewusstsein der Kunden und wird als solche wieder wahrgenommen -> Imageverbesserung der Landwirtschaft im Umland
- Transporteinsparung durch regionale "kurze" Wertschöpfungsketten macht erst eine signifikante THG-Reduktion möglich

Dachmarkenstrategie – Entwicklung im Rahmen des BMBF-Projektes "WERTvoll"

Bestandteil des Teilprojektes 3: Ökonomie und Wertschöpfung

Start mit der

WERTschöpfungskette

Getreide

strategie

Brot

4. "BioNitrat" HTW seit 2019

Kooperation des Wasserguts Canitz mit der Hochschule für Technik und Wirtschaft Dresden (HTW Dresden)

1. Kooperation in der FORSCHUNG

Gemeinsamer Antrag für neues Pilotprojekt "Verringerung der Nitratauswaschung mit biologischen Nitrifikationshemmern"
Laufzeit April 2019 bis Okt. 2022

HOCHSCHULE FÜR
TECHNIK UND WIRTSCHAFT
DRESDEN
UNIVERSITY OF APPLIED SCIENCES

EIP-Agri (Europäischen Innovationspartnerschaft "Landwirtschaftliche Produktivität und Nachhaltigkeit")

2. Kooperation im TRANSFER (neuer Schwerpunkt der HTW Dresden – neben Lehre und Forschung – gefördert über BMBF-Pilotprojekt Saxony⁵)
Beispiel:

Praxistagung "Ökologischer Landbau und Wasserschutz"
28. Nov. 2018 in Ostrau Teilnehmer: Landwirte, Wasserversorger

BioNitrat – Luzerne / Spitzwegerich

Fachtagung - Nährstoffm

Wasserwerke

5. Kompostierungsversuche / Getreideschälanlage

Kompostversuch Luzerne / Dinkelspelz mit Fa. RÖSL

Kompost

ZUSAMMENSETZUNG KOMPOST

INHALTSSTOFFE VON KOMPOSTEN

Kontakt

Dr. Bernhard Wagner

Geschäftsführer – Wassergut Canitz GmbH

Telefon: 03425 923425

bernhard.wagner@L.de

Was tun wir hier?

BÜNDNIS FÜR eine enkeltaugliche Landwirtschaft

		•	1	
•	Grei	മാ	nari	ndit
•			ıaı	ven

• Fachbeirat Pflanzliche Erzeugung der LfULG Sachsen seit 2015

• Präsidium Bioland e.V. seit 2018

Stellv. Sprecher des Bundesfachausschuss Ackerbau bei Bioland seit 2017

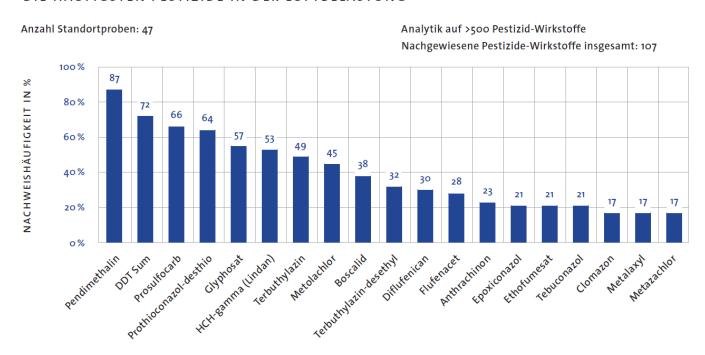
AG N\u00e4hrstoffmanagement bei Bioland e.V.
 Seit 2018

• Mitarbeit im Fachausschuss "Partnerschaft – Landwirtschaft & Umwelt" beim Bundesministerium

für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV) seit 2016

Beirat Bündnis für eine enkeltaugliche Landwirtschaft seit 2017

DLG – AG Nachhaltige Landwirtschaft



Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz

seit 2010

DIE HÄUFIGSTEN PESTIZIDE IN DER LUFTBELASTUNG

