

Rechtliche Grundlagen

VDMA e.V. Fachverband Landtechnik Dr. Johannes Hipp Dr. Nicolas Hummel

17.09.20242. Köllitscher Feldrobotiktag

1

VDMA

- Autonomy in agriculture

- Automotive vs. Agriculture
- International Influences
- Organisations
- VDMA
- Summary

Autonomy in agriculture

Source: www.lely.com

Source: www.deere.com

Source: www.claas.de

Source: www.futurefarming.com

Source: www.combined-powers.com

Source: www.terra.horsch.com

Source: www.amazone.net

Source: www.media.cnhindustrial.com

Source: www.fendt.com/de

Autonomy

Automotive vs. Agriculture

Automotive

- → Autonomous driving
 - Comfort,
 - Safety,

Based on:

- Legislation (2019/2144),
- Cyber Security (ISO/SAE 21434),
- Level of autonomy (SAE).

Source: www.sae.org/blog/sae-j3016-update

\rightarrow Autonomous WORK \rightarrow Quality of process

- Field boundaries ("Drive"),
- Agricultural processes in the fields and at the farmyard,
- Autonomous driving at public roads not in the focus,
- Shortage of skilled workers (?),

Boundary conditions:

- Cyber Security not addressed yet (ISO/WD 24882),
- No guidance from politics,
- Ensuring of yield and function is essential for user,
- Communication between tractor and implement (TIM ?)

Autonomy in agriculture

With steering wheel

Source: www.deere.com

Source: www.futurefarming.com

Source: www.media.cnhindustrial.com

Without steering wheel

Source: www.claas.de

Source: www.combined-powers.com

Source: www.terra.horsch.com

Autonomous self driving implements

SATELLITEN

TABLET

Source: www.fendt.com/de

Source: www.amazone.net

International organizations and influences

Machinery Regulation, Data Act, CRA, AI Act

European Agricultural Machinery Association

Asian and Pacific Network for **Testing of Agricultural Machinery**

Japan – IAM/NARO Test codes

Australia – Code of Practice

Great Britain – Code of Practice

ISO 18497:2024

Agricultural machinery and tractors Safety of partially automated, semi-autonomous and autonomous machinery

Part 1	Machine design principles and vocabulary
	(Gestaltungsleitsätze und Vokabular für Maschinen)
Part 2	Design principles for obstacle protective systems
	(Gestaltungsleitsätze für Hindernisschutzsysteme)
Part 3	Design principles for autonomous operating zones
	(Gestaltungsleitsätze für autonome Betriebsbereiche)
Part 4	Verification methods and principles
	(Verifizierungsmethoden und Validierungsgrundsätze)

ISO 18497-1:2024

Categorization

Manual Non-Automated (3.1) Partially Automated (3.2) Semi-Autonomous (3.3) Autonomous (3.4) Functions (3.5) Non-Automated (3.6) Automated (3.7) Modes Manual Mode (3.9) Autonomous Mode (3.10)

Categories

manual non-automated

non-automated only machine functions that are intended to operate in manual mode during all of the machine's operating cycle

partially automated

non-automated and automated machine functions that are intended to operate in manual mode during all of the machine's operating cycle

semi-autonomous

automated machine functions that are intended to operate in autonomous mode during part of the machine's operating cycle in addition to non-automated and automated machine functions that are intended to operate in manual mode to complete some of the tasks assigned

autonomous

automated machine functions that operate in autonomous mode during all of the machine's operating cycle

Functions

non-automated

technique, method, or system of operating and controlling machine function(s) by operator interaction

automated

technique, method, or system of operating and controlling machine function(s) by automatic means

Modes

manual mode

mode of machine operation in which machine function(s) are controlled by an operator

autonomous mode

mode of machine operation in which a machine performs functions related to its defined tasks without operator interaction

CEMA Project of type-C standard for Autonomous Soil-Working Function

CENIA European Agricultural Machinery Association

CEMA PT4 Small group

Project of type-C standard for Autonomous Soil-Working Function

PT4 Smallgroup

- Drafting a Type-C standard to be delivered to ISO in 2025
- A draft built from the ISO 12100:2010 approach
- Focus on Autonomous Soil-Working Functions at first
- Harmonization towards new Machinery Regulation planned
- Rely on the revision of the Type B ISO 18497:2024

AEF Autonomy in Agriculture Day

Conference Bologna 29th of November 2023

Autonomy in Agriculture – where does the AEF fit?

- Follow up to AEF Meeting Milwaukee 2022
- Presentations of international manufacturer (CNH, Krone, Lemken, Claas...)
- Global challenges on autonomy in agriculture
 - standardization
 - Legislation

AEF "Autonomy in Ag" Team

OECD Tractor Codes

TRACTORS STANDARD CODES

CODE 1	Testing of front mounted protective structures on narrow-DE 6 track wheeled agricultural and forestry tractors
Testing of agricultural and forestry tractor CODE 2 performance.	Testing of the rear-mounted protective structures on narrow- track wheeled agricultural and forestry tractors.
Testing of the strength of protective structures for DE 3 agricultural and forestry tractors (dynamic test).	Testing of protective structures on tracklaying tractors. ODE 8
Testing of the strength of protective structures for DE 4 agricultural and forestry tractors (static test).	Protective structures for telehandlers (testing of falling-object and roll-over protective structures fitted to self-propelled 9 variable reach all-terrain trucks for agricultural use).
Noise measurement at the driver's position(s). ODE 5	Testing of falling object protective structures. CODE 10
	Source: OECD

OECD Sub-working Group (SWG) "Robot Tractors"

Mandat:

- to exchange information on actual developments in agriculture, industry, research, etc.
 - to continue the liaison with ISO TC23 SC19 for the 18497 work (especially the Part 4 work) and reinforce collaboration with other relevant organizations (Agricultural Industry Electronics Foundation, European Commission, relevant United Nations bodies, CEMA)
- to identify issues hindering the development and use of this technology in various use
- to develop repeatable and reproducible laboratory in- / out-door tests
- to explore the feasibility of developing a common test code, focusing on minimum requirements, avoiding duplication of work (standards) and ensuring value for money to manufacturers and end users.
- Key Principles: Voluntary tests, no double testing, added value for industry, contribute to global trade.
- Chair: Türkiye

Co-Chair: France, Japan and OECD Co-Ordinating Center

OECD Sub-working Group (SWG) "Robot Tractors"

- Australian Code of Practice
- INRAE ARPA protocols
- Liaison with ISO/TC 23/SC 19/WG 8 on ISO 18497
- Technologies Sensors for autonomy

ARPA1

Test Track with 18497 reference obstacle

ARPA2

ARPA2 rception system characterization under harsh environmental conditions (fog, rain, night, dust)

W ARPA3 Works area integrity evaluation

Source: OECD

CODE OF PRACTICE

GPA

Agricultural Mobile Field Machinery with Autonomous Functions in Australia

Liaison ISO OECD

2022-04-22 ISO/TC 23/SC 19 N1433

ISO TC 23/SC 19 "Agricultural Electronics"

Secretariat: DIN

Liaison

between

OECD Sub-working group on Robot Tractors

and

ISO/TC23/SC19/WG8

- To ISO/TC 23/SC 19, P-Members, O-Members, Liaison Members
- From Dr. Hermann Buitkamp, ISO TC 23/SC 19 Committee Manager

Resolution 483:2022

Liaison of ISO/TC23/SC19/WG8 to OECD sub-working group for robot tractors

Considering

- the invitation for cooperation of OECD sub-working group for robot tractors to ISO/TC23/SC19 and the
- result of voting of the ballot of 2022-04-22,

ISO TC23/SC19

- agrees to create a liaison of ISO/TC23/SC19/WG8 and OECD sub-working group for robot tractors
- approves Joe Flaugher as the WG8 liaison officer,
- accepts Jose Brambila-Macias and Marie Russel for OECD tractor test code sub-working group for robot tractors as liaison officers

The liaison was approved by 16 members, 0 members voted against, and 7 members abstained.

Tasks for VDMA agricultural machinery

Standardization bodies

Technical Committees (TA)

- TA1 Tractors
- TA2 Equipment for soil working,
 seeding, fertilization & spraying
- **TA4** Harvesting equipment
- TA8 Transportation
- TA11 Gardening
- TAE Electronics
- \rightarrow TA crossing topic

ISO

ISO

ISO

ISO

ISO

VDMA Workshop

Need for standardisation on autonomy in agriculture

31st of January 2024 at VDMA Frankfurt Workshop – VDMA platform "Autonomous agricultural machinery"

- The idea was formulated at "NLA Vorstand"
- Branch internal discussion
- Overview on possible solutions, involved ministries and other organisations
- Coordination between ISO, AEF, OECD...

2nd of September 2024 at VDMA Frankfurt Task Force – Sensorsystemtestung zur Objekterkennung zum Schutz von Personen

- The idea was developed during the VDMA autonomy Workshop on 31st of January
- Development of test procedures evaluating the performance of sensor systems
- Reports at the NLA-meetings

Task Force **VDN** Sensorsystemtestung zur Objekterkennung zum Schutz von Personen **/**

Specification of the objectives and scope:

- The sensor system tests are not specifically about detecting people, but about protecting people.
- The aim is to prove the detection capability of objects: Sensor type A with the software B under the test situation C has the probability of detecting object D in E meters of XX %

A sensor system test includes

- Sensor(s)
- Software(s) that can be integrated in the sensor or external (on/offboard the sensor) → Black box
- A safety-relevant function (object, environmental condition)
- Objects must also be defined and classified for personal protection

Medium-term goal:

- On the basis of IEC/TS 62998-1, adaptation to agriculture-specific applications.
- ISO TS technical specification?

- Identifying the need for standardization
- VDMA platform
 - "Autonomous agricultural machinery"
- Intersectoral exchange
- International exchange
- Communication between tractor and implement
- Machinery Regulation, EU Data Act, EU CRA
- Clarifying legal issues

Dr. Johannes Hipp E-Mail: johannes.hipp@vdma.org Phone: +49 69 6603 1691

Dr. Nicolas Hummel E-Mail: nicolas.hummel@vdma.org Phone.: +49 69 6603 1310

VDMA Agricultural Machinery Lyoner Straße 18 60528 Frankfurt, Germany